langchain-go调用deepseek

1.查看官网

发现只有ollama,openai,Mistral于是查看代码

2.代码查看

先从llm, err := openai.New(url, model, token)开始

发现New方法可以传option参数,再看一下option参数
go 复制代码
const (
	tokenEnvVarName        = "OPENAI_API_KEY"      //nolint:gosec
	modelEnvVarName        = "OPENAI_MODEL"        //nolint:gosec
	baseURLEnvVarName      = "OPENAI_BASE_URL"     //nolint:gosec
	baseAPIBaseEnvVarName  = "OPENAI_API_BASE"     //nolint:gosec
	organizationEnvVarName = "OPENAI_ORGANIZATION" //nolint:gosec
)

type APIType openaiclient.APIType

const (
	APITypeOpenAI  APIType = APIType(openaiclient.APITypeOpenAI)
	APITypeAzure           = APIType(openaiclient.APITypeAzure)
	APITypeAzureAD         = APIType(openaiclient.APITypeAzureAD)
)

const (
	DefaultAPIVersion = "2023-05-15"
)

type options struct {
	token        string
	model        string
	baseURL      string
	organization string
	apiType      APIType
	httpClient   openaiclient.Doer

	responseFormat *ResponseFormat

	// required when APIType is APITypeAzure or APITypeAzureAD
	apiVersion     string
	embeddingModel string

	callbackHandler callbacks.Handler
}

// Option is a functional option for the OpenAI client.
type Option func(*options)

// ResponseFormat is the response format for the OpenAI client.
type ResponseFormat = openaiclient.ResponseFormat

// ResponseFormatJSON is the JSON response format.
var ResponseFormatJSON = &ResponseFormat{Type: "json_object"} //nolint:gochecknoglobals

// WithToken passes the OpenAI API token to the client. If not set, the token
// is read from the OPENAI_API_KEY environment variable.
func WithToken(token string) Option {
	return func(opts *options) {
		opts.token = token
	}
}

// WithModel passes the OpenAI model to the client. If not set, the model
// is read from the OPENAI_MODEL environment variable.
// Required when ApiType is Azure.
func WithModel(model string) Option {
	return func(opts *options) {
		opts.model = model
	}
}

// WithEmbeddingModel passes the OpenAI model to the client. Required when ApiType is Azure.
func WithEmbeddingModel(embeddingModel string) Option {
	return func(opts *options) {
		opts.embeddingModel = embeddingModel
	}
}

// WithBaseURL passes the OpenAI base url to the client. If not set, the base url
// is read from the OPENAI_BASE_URL environment variable. If still not set in ENV
// VAR OPENAI_BASE_URL, then the default value is https://api.openai.com/v1 is used.
func WithBaseURL(baseURL string) Option {
	return func(opts *options) {
		opts.baseURL = baseURL
	}
}

// WithOrganization passes the OpenAI organization to the client. If not set, the
// organization is read from the OPENAI_ORGANIZATION.
func WithOrganization(organization string) Option {
	return func(opts *options) {
		opts.organization = organization
	}
}

// WithAPIType passes the api type to the client. If not set, the default value
// is APITypeOpenAI.
func WithAPIType(apiType APIType) Option {
	return func(opts *options) {
		opts.apiType = apiType
	}
}

// WithAPIVersion passes the api version to the client. If not set, the default value
// is DefaultAPIVersion.
func WithAPIVersion(apiVersion string) Option {
	return func(opts *options) {
		opts.apiVersion = apiVersion
	}
}

// WithHTTPClient allows setting a custom HTTP client. If not set, the default value
// is http.DefaultClient.
func WithHTTPClient(client openaiclient.Doer) Option {
	return func(opts *options) {
		opts.httpClient = client
	}
}

// WithCallback allows setting a custom Callback Handler.
func WithCallback(callbackHandler callbacks.Handler) Option {
	return func(opts *options) {
		opts.callbackHandler = callbackHandler
	}
}

// WithResponseFormat allows setting a custom response format.
func WithResponseFormat(responseFormat *ResponseFormat) Option {
	return func(opts *options) {
		opts.responseFormat = responseFormat
	}
}
这里发现了各种配置的地方,以及获取环境变量,于是我们使用openai包下面的各种with方法来配置deepseek的地址
go 复制代码
// 我这里使用的是腾讯的API
url := openai.WithBaseURL("https://api.lkeap.cloud.tencent.com/v1/chat/completions")
	model := openai.WithModel("deepseek-v3")
	token := openai.WithToken("API-KEY")
	// We can construct an LLMChain from a PromptTemplate and an LLM.
	llm, err := openai.New(url, model, token)
	if err != nil {
		return err
	}
	ctx := context.Background()
	completion, err := llm.Call(ctx, "The first man to walk on the moon",
		llms.WithTemperature(0.8),
		llms.WithStopWords([]string{"Armstrong"}))

	if err != nil {
		return err
	}
	fmt.Println(completion)
	return nil
相关推荐
董厂长4 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
iCxhust6 小时前
c# U盘映像生成工具
开发语言·单片机·c#
yangzhi_emo6 小时前
ES6笔记2
开发语言·前端·javascript
emplace_back7 小时前
C# 集合表达式和展开运算符 (..) 详解
开发语言·windows·c#
jz_ddk7 小时前
[学习] C语言数学库函数背后的故事:`double erf(double x)`
c语言·开发语言·学习
萧曵 丶8 小时前
Rust 所有权系统:深入浅出指南
开发语言·后端·rust
xiaolang_8616_wjl8 小时前
c++文字游戏_闯关打怪2.0(开源)
开发语言·c++·开源
收破烂的小熊猫~8 小时前
《Java修仙传:从凡胎到码帝》第四章:设计模式破万法
java·开发语言·设计模式
nananaij8 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm