anythingLLM和deepseek4j和milvus组合建立RAG知识库

1、deepseek本地化部署使用 ollama

下载模型

Tags · bge-m3

html 复制代码
bge-m3:latest      
deepseek-r1:32b    
deepseek-r1:8b     

2、安装好向量数据库 milvus

docker安装milvus单机版-CSDN博客

3、安装 anythingLLM

AnythingLLM | The all-in-one AI application for everyone

官网下载很慢,网盘地址

通过网盘分享的文件:AnythingLLMDesktop.exe

链接: https://pan.baidu.com/s/1YfNKhYNBO1t8ULuK00E5yQ?pwd=gi2n 提取码: gi2n

4、anything 配置

第一步新建工作区

第二步 工作区配置 聊天配置

第三步 向量数据库配置

第四步 Embedding模型配置

第五步 喂数据

进入 milvus的管理界面可以看到 anything创建的向量库

第六步 在代码中使用

java 复制代码
    /**
     * RAG知识库接口
     * @param prompt
     * @return
     */
    @GetMapping(value = "/rag/chat", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
    public Flux<ChatCompletionResponse> ragchat(String prompt) {

        List<Float> floatList = embeddingClient.embed(prompt);

        SearchReq searchReq = SearchReq.builder()
                .collectionName("anythingllm_test01")
                .data(Collections.singletonList(new FloatVec(floatList)))
//                metadata  text   deepseek4j_test
                .outputFields(Collections.singletonList("metadata"))
                .topK(3)
                .build();

        SearchResp searchResp = milvusClientV2.search(searchReq);

        List<String> resultList = new ArrayList<>();
        List<List<SearchResp.SearchResult>> searchResults = searchResp.getSearchResults();
        for (List<SearchResp.SearchResult> results : searchResults) {
            System.out.println("TopK results:");
            for (SearchResp.SearchResult result : results) {
                resultList.add(result.getEntity().get("metadata").toString());
            }
        }


        ChatCompletionRequest request = ChatCompletionRequest.builder()
                // 根据渠道模型名称动态修改这个参数
                .model("deepseek-r1:32b")
                .addUserMessage(String.format("你要根据用户输入的问题:%s \n \n 参考如下内容: %s  \n\n 整理处理最终结果", prompt, resultList)).build();

        return deepSeekClient.chatFluxCompletion(request);
    }

deepseek 调试 调试效果如下

deepseek私有化RAG思路

ollama 运行deepseek模型和向量化模型bge-m3,anything 实现喂数据到向量化数据库milvus,deepseek4j结合便可以实现RAG私有化

相关推荐
在未来等你3 天前
互联网大厂Java求职面试:基于RAG的智能问答系统设计与实现-2
java·智能问答·milvus·向量数据库·rag·spring ai
取啥都被占用4 天前
milvus+flask山寨复刻《从零构建向量数据库》第7章
milvus
游王子4 天前
Milvus(18):IVF_PQ、HNSW
milvus
AI大模型顾潇4 天前
[特殊字符] Milvus + LLM大模型:打造智能电影知识库系统
数据库·人工智能·机器学习·大模型·llm·llama·milvus
Timmer丿5 天前
AI开发跃迁指南(第三章:第四维度1——Milvus、weaviate、redis等向量数据库介绍及对比选型)
数据库·人工智能·milvus
游王子5 天前
Milvus(16):索引解释
milvus
桥Dopey6 天前
Milvus 向量数据库详解与实践指南
推荐系统·milvus·向量数据库·图像检索
游王子6 天前
Milvus(15):插入和删除
milvus
桥Dopey6 天前
mac 使用 Docker 安装向量数据库Milvus独立版的保姆级别教程
milvus·向量数据库
游王子9 天前
Milvus(10):JSON 字段、数组字段
json·milvus