INA(In-Network Aggregation)技术

In-Network Aggregation(网络内聚合) 是大模型分布式训练或推理中优化通信效率的一种技术,核心思想是在网络传输路径中直接完成数据聚合,而非依赖终端节点处理,从而降低通信开销、提升整体效率。

核心原理

在传统分布式训练中,计算节点(如GPU)需要将本地计算的梯度或中间结果发送到中心节点(如参数服务器)进行聚合,这会产生大量的网络传输。In-Network Aggregation 则是通过可编程交换机、智能网卡(例如 NVIDIA BlueField)或专用硬件,在数据包的传输过程中直接完成聚合操作(如求和、平均),最终仅传输聚合后的结果。

例子:多GPU训练的梯度聚合

假设有4个GPU并行训练一个大模型,传统流程是:

  1. 每个GPU计算本地梯度。
  2. 所有GPU将梯度发送到中心参数服务器。
  3. 参数服务器聚合梯度(如求平均)。
  4. 参数服务器将聚合后的梯度发回GPU,用于更新模型。
    使用In-Network Aggregation后:
  5. GPU将梯度发送到交换机。
  6. 交换机在传输过程中直接对梯度进行累加(例如对数据包中的数值逐跳求和)。
  7. 最终参数服务器仅收到已累加的梯度总和,直接完成平均后发回GPU。
    优势:
  • 通信量降低:传统方法需传输4份完整梯度,INA只需传输1份聚合后的结果。
  • 延迟缩短:避免中心节点的处理瓶颈,聚合与传输并行完成。
  • 带宽利用率提升:减少重复数据传输。

应用场景

  1. 分布式训练:如All-Reduce操作的优化(NVIDIA NCCL等库已尝试类似技术)。
  2. 边缘计算推理:多个边缘设备的结果聚合可直接在网络中完成,减少回传数据量。
  3. 超大规模模型:如千亿参数模型的训练,通信开销占主导,INA可显著加速。

技术实现

  • 可编程交换机(如P4语言):支持自定义数据包处理逻辑,实现加法、拼接等操作。
  • 智能网卡:在网卡硬件层面完成聚合,减少CPU/GPU的干预。
  • 协议优化:例如结合RDMA(远程直接内存访问)实现低延迟传输。

总结

In-Network Aggregation 通过"传输即计算"的方式,将计算任务卸载到网络设备,是突破分布式训练通信瓶颈的关键技术之一,尤其适用于大模型场景。

相关推荐
TM1Club4 分钟前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
陈天伟教授7 分钟前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
zhang133830890758 分钟前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
板面华仔31 分钟前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
GAOJ_K44 分钟前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
ai_xiaogui1 小时前
【开源探索】Panelai:重新定义AI服务器管理面板,助力团队私有化算力部署与模型运维
人工智能·开源·私有化部署·docker容器化·panelai·ai服务器管理面板·comfyui集群管理
源于花海1 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
king of code porter1 小时前
百宝箱企业版搭建智能体应用-平台概述
人工智能·大模型·智能体
愚公搬代码1 小时前
【愚公系列】《AI短视频创作一本通》004-AI短视频的准备工作(创作AI短视频的基本流程)
人工智能·音视频
物联网软硬件开发-轨物科技1 小时前
【轨物洞见】告别“被动维修”!预测性运维如何重塑老旧电站的资产价值?
运维·人工智能