INA(In-Network Aggregation)技术

In-Network Aggregation(网络内聚合) 是大模型分布式训练或推理中优化通信效率的一种技术,核心思想是在网络传输路径中直接完成数据聚合,而非依赖终端节点处理,从而降低通信开销、提升整体效率。

核心原理

在传统分布式训练中,计算节点(如GPU)需要将本地计算的梯度或中间结果发送到中心节点(如参数服务器)进行聚合,这会产生大量的网络传输。In-Network Aggregation 则是通过可编程交换机、智能网卡(例如 NVIDIA BlueField)或专用硬件,在数据包的传输过程中直接完成聚合操作(如求和、平均),最终仅传输聚合后的结果。

例子:多GPU训练的梯度聚合

假设有4个GPU并行训练一个大模型,传统流程是:

  1. 每个GPU计算本地梯度。
  2. 所有GPU将梯度发送到中心参数服务器。
  3. 参数服务器聚合梯度(如求平均)。
  4. 参数服务器将聚合后的梯度发回GPU,用于更新模型。
    使用In-Network Aggregation后:
  5. GPU将梯度发送到交换机。
  6. 交换机在传输过程中直接对梯度进行累加(例如对数据包中的数值逐跳求和)。
  7. 最终参数服务器仅收到已累加的梯度总和,直接完成平均后发回GPU。
    优势:
  • 通信量降低:传统方法需传输4份完整梯度,INA只需传输1份聚合后的结果。
  • 延迟缩短:避免中心节点的处理瓶颈,聚合与传输并行完成。
  • 带宽利用率提升:减少重复数据传输。

应用场景

  1. 分布式训练:如All-Reduce操作的优化(NVIDIA NCCL等库已尝试类似技术)。
  2. 边缘计算推理:多个边缘设备的结果聚合可直接在网络中完成,减少回传数据量。
  3. 超大规模模型:如千亿参数模型的训练,通信开销占主导,INA可显著加速。

技术实现

  • 可编程交换机(如P4语言):支持自定义数据包处理逻辑,实现加法、拼接等操作。
  • 智能网卡:在网卡硬件层面完成聚合,减少CPU/GPU的干预。
  • 协议优化:例如结合RDMA(远程直接内存访问)实现低延迟传输。

总结

In-Network Aggregation 通过"传输即计算"的方式,将计算任务卸载到网络设备,是突破分布式训练通信瓶颈的关键技术之一,尤其适用于大模型场景。

相关推荐
ARM+FPGA+AI工业主板定制专家2 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
长鸳词羡2 小时前
wordpiece、unigram、sentencepiece基本原理
人工智能
ㄣ知冷煖★2 小时前
【GPT5系列】ChatGPT5 提示词工程指南
人工智能
科士威传动2 小时前
丝杆支撑座在印刷设备如何精准运行?
人工智能·科技·自动化·制造
taxunjishu4 小时前
DeviceNet 转 Modbus TCP 协议转换在 S7-1200 PLC化工反应釜中的应用
运维·人工智能·物联网·自动化·区块链
kalvin_y_liu4 小时前
智能体框架大PK!谷歌ADK VS 微软Semantic Kernel
人工智能·microsoft·谷歌·智能体
爱看科技4 小时前
智能眼镜行业腾飞在即,苹果/微美全息锚定“AR+AI眼镜融合”之路抢滩市场!
人工智能·ar
Juchecar7 小时前
LLM模型与ML算法之间的关系
人工智能
FIN66687 小时前
昂瑞微:深耕射频“芯”赛道以硬核实力冲刺科创板大门
前端·人工智能·科技·前端框架·信息与通信·智能
benben0447 小时前
京东agent之joyagent解读
人工智能