基于PyTorch的深度学习2——逐元素操作,归并,比较,矩阵

以下为部分逐元素操作代码实例。

复制代码
import torch

t = torch.randn(1, 3)
t1 = torch.randn(3, 1)
t2 = torch.randn(1, 3)

#t+0.1*(t1/t2)
torch.addcdiv(t, 0.1, t1, t2)

#计算sigmoid
torch.sigmoid(t)

#将t限制在[0,1]之间
torch.clamp(t,0,1)

#t+2进行就地运算
t.add_(2)

归并操作一般涉及一个dim参数,指定沿哪个维进行归并。另一个参数是keepdim,说明输出结果中是否保留维度1,缺省情况是False,即不保留。以下为归并操作的部分代码

复制代码
import torch

#生成一个含6个数的向量
a=torch.linspace(0,10,6)

#使用view方法,把a变为2x3矩阵
a=a.view((2,3))

#沿y轴方向累加,即dim=0
b=a.sum(dim=0)   #b的形状为[3]

#沿y轴方向累加,即dim=0,并保留含1的维度
b=a.sum(dim=0,keepdim=True) #b的形状为[1,3]

机器学习和深度学习中存在大量的矩阵运算,常用的算法有两种:一种是逐元素乘法,另外一种是点积乘法

1)Torch的dot与Numpy的dot有点不同,Torch中的dot是对两个为1D张量进行点积运算,Numpy中的dot无此限制。

2)mm是对2D的矩阵进行点积,bmm对含batch的3D进行点积运算。

3)转置运算会导致存储空间不连续,需要调用contiguous方法转为连续。

torch.dottorch.mmtorch.bmm

1. 使用 torch.dot

torch.dot 计算两个一维张量(向量)的点积。

复制代码
import torch

a = torch.tensor([2, 3])
b = torch.tensor([3, 4])

result_dot = torch.dot(a, b)  # 运行结果为 2*3 + 3*4 = 6 + 12 = 18
print("Dot product result:", result_dot)

解释: 点积是对应元素相乘后的和,即 2×3+3×4=6+12=182×3+3×4=6+12=18。

2. 使用 torch.mm

torch.mm 执行两个二维张量(矩阵)之间的矩阵乘法。

复制代码
x = torch.randint(10, (2, 3))  # 创建一个形状为 (2, 3) 的随机整数张量
y = torch.randint(6, (3, 4))   # 创建一个形状为 (3, 4) 的随机整数张量

result_mm = torch.mm(x, y)  # 形状为 (2, 4) 的结果张量
print("Matrix multiplication result:\n", result_mm)

解释 : torch.mm 对两个二维张量执行标准的矩阵乘法。给定 XX 是 2×32×3 的矩阵,YY 是 3×43×4 的矩阵,则结果是一个 2×42×4 的矩阵。

示例输出

复制代码
x = tensor([[7, 8, 9],
            [5, 6, 7]])
y = tensor([[4, 3, 2, 1],
            [0, 1, 2, 3],
            [4, 3, 2, 1]])

tensor([[64, 54, 44, 34],
        [48, 40, 32, 24]])

3. 使用 torch.bmm

torch.bmm 执行批量矩阵乘法,适用于三维张量,其中每个二维子张量(切片)都进行矩阵乘法。

复制代码
x = torch.randint(10, (2, 2, 3))  # 创建一个形状为 (2, 2, 3) 的随机整数张量
y = torch.randint(6, (2, 3, 4))   # 创建一个形状为 (2, 3, 4) 的随机整数张量

result_bmm = torch.bmm(x, y)  # 形状为 (2, 2, 4) 的结果张量
print("Batch matrix multiplication result:\n", result_bmm)

解释 : torch.bmm 针对三维张量中的每一对二维子张量执行矩阵乘法。对于形状为 (batch_size, m, n)(batch_size, n, p) 的输入张量,输出将是形状为 (batch_size, m, p) 的张量。

示例输出

假设 xy 分别是:

复制代码
x = tensor([[[7, 8, 9],
             [5, 6, 7]],

            [[1, 2, 3],
             [4, 5, 6]]])

y = tensor([[[4, 3, 2, 1],
             [0, 1, 2, 3],
             [4, 3, 2, 1]],

            [[1, 2, 3, 4],
             [5, 6, 7, 8],
             [9, 10, 11, 12]]])

result_bmm 可能是:

复制代码
tensor([[[64, 54, 44, 34],
         [48, 40, 32, 24]],

        [[38, 44, 50, 56],
         [86, 98, 110, 122]]])

总结

  • torch.dot:用于计算两个一维张量的点积。
  • torch.mm:用于计算两个二维张量的标准矩阵乘法。
  • torch.bmm:用于计算两个三维张量中对应的二维子张量之间的批量矩阵乘法。
相关推荐
Aevget2 小时前
MyEclipse全新发布v2025.2——AI + Java 24 +更快的调试
java·ide·人工智能·eclipse·myeclipse
IT_陈寒2 小时前
React 18并发渲染实战:5个核心API让你的应用性能飙升50%
前端·人工智能·后端
韩曙亮2 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
科普瑞传感仪器2 小时前
从轴孔装配到屏幕贴合:六维力感知的机器人柔性对位应用详解
前端·javascript·数据库·人工智能·机器人·自动化·无人机
说私域2 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的社群运营创新研究
人工智能·小程序·开源
程序员小灰2 小时前
谷歌AI模型Gemini 3.0 Pro,已经杀疯了!
人工智能·aigc·gemini
杨浦老苏2 小时前
AI驱动的图表生成器Next-AI-Draw.io
人工智能·docker·ai·群晖·draw.io
饭饭大王6663 小时前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
John_ToDebug3 小时前
浏览器内核的“智变”:从渲染引擎到AI原生操作系统的征途
人工智能·chrome
用户4802151702473 小时前
Transformer 的技术层面
人工智能