Spark任务用什么提交的

spark任务提交的方式有很多种:

1、使用spark_shell:日常做一些简单的测试,使用spark-shell命名就可以,然后通过scala语言进行查询处理

powershell 复制代码
/home/hadoop/app/spark-2.2.0-bin-2.6.0-cdh5.7.0/bin/spark-shell \
> --master spark://192.168.2.111:7077 \
> --executor-memory 2G \
> --total-executor-cores 2
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
25/02/15 16:45:37 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
25/02/15 16:45:43 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
Spark context Web UI available at http://192.168.2.111:4040
Spark context available as 'sc' (master = spark://192.168.2.111:7077, app id = app-20250215164538-0002).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.0
      /_/
         
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_144)
Type in expressions to have them evaluated.
Type :help for more information.

scala> sc.textFile("hdfs://192.168.2.102:9000//user/spark/input/word.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("hdfs://192.168.2.102:9000//user/spark/out")
                                                                                
scala> sc.textFile("hdfs://192.168.2.102:9000/user/spark/out/*").collect().foreach(println)
(orange,1)
(queen,1)
(rabbit,1)
(fish,1)
(dog,1)
(apple,1)
(pig,1)
(umbrella,1)
(snake,1)
(lion,1)
(juice,1)
(cat,1)
(tiger,1)
(banana,1)
(monkey,1)
(nose,1)
(kite,1)
(elephant,1)
(ice,1)
(goat,1)
(horse,1)

2、使用spark-commit的shell脚本提交任务:这种就是涉及到jar包,我们会开发好我们的逻辑并通过maven打包好java包,通过spark-commit命令提交saprk运行任务李并且在工作中我们需要通过xx-job或者Airfloe,Azkaban,等等的调度工具进行定时调度运行。

powershell 复制代码
[root@hadoop000 spark-2.2.0-bin-2.6.0-cdh5.7.0]# /home/hadoop/app/spark-2.2.0-bin-2.6.0-cdh5.7.0/bin/spark-submit \
> --class org.apache.spark.examples.SparkPi \
> --master spark://192.168.2.111:7077 \
> --executor-memory 1G \
> --total-executor-cores 2 \
> /home/hadoop/app/spark-2.2.0-bin-2.6.0-cdh5.7.0/examples/jars/spark-examples_2.11-2.2.0.jar
相关推荐
^Moon^1 小时前
CycloneDDS:跨主机多进程通信全解析
c++·分布式·dds
长安城没有风5 小时前
从入门到精通【Redis】Redis 典型应⽤ --- 分布式锁
数据库·redis·分布式
言之。5 小时前
大模型嵌入 vs ES:语义搜索与关键字搜索
大数据·elasticsearch·搜索引擎
SirLancelot16 小时前
StarRocks-基本介绍(一)基本概念、特点、适用场景
大数据·数据库·数据仓库·sql·数据分析·database·数据库架构
阑梦清川7 小时前
es的docker部署和docker相关的可可视化面板工具介绍
大数据·elasticsearch·docker
Mr_LiYYD8 小时前
elasticsearch数据迁移
大数据·elasticsearch·搜索引擎
dalianwawatou8 小时前
GitLab 代码基础操作清单
大数据·elasticsearch·gitlab
Costrict9 小时前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio
爬山算法9 小时前
Redis(69)Redis分布式锁的优点和缺点是什么?
数据库·redis·分布式
阿里云大数据AI技术9 小时前
云栖实录|阿里云 Milvus:AI 时代的专业级向量数据库
大数据·人工智能·搜索引擎