1 导引
我们在上一篇博客《学习理论:预测器-拒绝器多分类弃权学习》中介绍了弃权学习的基本概念和方法,其中包括了下列针对多分类问题的单阶段预测器-拒绝器弃权损失\(L_{\text{abst}}\):
\[L_{\text{abst}}(h, r, x, y) = \underbrace{\mathbb{I}{\text{h}(x) \neq y}\mathbb{I}{r(x) > 0}}{\text{不弃权}} + \underbrace{c(x) \mathbb{I}{r(x)\leqslant 0}}_{\text{弃权}} \]
其中\((x, y)\in \mathcal{X}\times \mathcal{Y}\)(标签\(\mathcal{Y} = \{1, \cdots, n\}\)(\(n\geqslant 2\))),\((h, r)\in \mathcal{H}\times\mathcal{R}\)为预测器-拒绝器对(\(\mathcal{H}\)和\(\mathcal{R}\)为两个从\(\mathcal{X}\)到\(\mathbb{R}\)的函数构成的函数族),\(\text{h}(x) = \text{arg max}_{y\in \mathcal{Y}} {h(x)}_y\)直接输出实例\(x\)的预测标签。为了简化讨论,在后文中我们假设\(c\in (0, 1)\)为一个常量花费函数。
设\(\mathcal{l}\)为在标签\(\mathcal{Y}\)上定义的0-1多分类损失的代理损失,则我们可以在此基础上进一步定义弃权代理损失\(L\):
\[L(h, r, x, y) = \mathcal{l}(h, x, y)\phi(-\alpha r(x)) + \psi(c) \phi(\beta r(x)) \]
其中\(\psi\)是非递减函数,\(\phi\)是非递增辅助函数(做为\(z \mapsto \mathbb{I}_{z \leqslant 0}\)的上界),\(\alpha\)、\(\beta\)为正常量。下面,为了简便起见,我们主要对\(\phi(z) = \exp(-z)\)进行分析,尽管相似的分析也可以应用于其它函数\(\phi\)。
在上一篇博客中,我们还提到了单阶段代理损失满足的\((\mathcal{H}, \mathcal{R})\)-一致性界:
定理 1 单阶段代理损失的\((\mathcal{H}, \mathcal{R})\) - 一致性界 假设\(\mathcal{H}\)是对称与完备的。则对\(\alpha=\beta\),\(\mathcal{l} = \mathcal{l}{\text{mae}}\),或者\(\mathcal{l} = \mathcal{l}{\rho}\)与\(\psi(z) = z\),或者\(\mathcal{l} = \mathcal{l}_{\rho - \text{hinge}}\)与\(\psi(z) = z\),有下列\((\mathcal{H}, \mathcal{R})\) - 一致性界对\(h\in \mathcal{H}, r\in \mathcal{R}\)和任意分布成立:
\[R_{L_{\text{abst}}}(h, r) - R_{L_{\text{abst}}}^{*}(\mathcal{H}, \mathcal{R}) + M_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}) \leqslant \Gamma(R_L(h, r) - R_{L}^{*}(\mathcal{H}, \mathcal{R}) + M_{L}(\mathcal{H}, \mathcal{R})) \]
其中对\(\mathcal{l} = \mathcal{l}{\text{mae}}\)取\(\Gamma (z) = \max\{2n\sqrt{z}, nz\}\);对\(\mathcal{l}=\mathcal{l}{\rho}\)取\(\Gamma (z) = \max\{2\sqrt{z}, z\}\);对\(\mathcal{l} = \mathcal{l}_{\rho - \text{hinge}}\)取\(\Gamma (z) = \max\{2\sqrt{nz}, z\}\)。
不过,在上一篇博客中,我们并没有展示单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界的详细证明过程,在这片文章里我们来看该如何对该定理进行证明(正好我导师也让我仔细看看这几篇论文中相关的分析部分,并希望我掌握单阶段方法的证明技术)。
2 一些分析的预备概念
我们假设带标签样本\(S=((x_1, y_1), \cdots, (x_m, y_m))\)独立同分布地采自\(p(x, y)\)。则对于目标损失\(L_{\text{abst}}\)和代理损失\(L\)而言,可分别定义\(L_{\text{abst}}\)-期望弃权损失\(R_{L}(h, r)\)(也即目标损失函数的泛化误差)和\(L\)-期望弃权代理损失\(R_{L}(h, r)\)(也即代理损失函数的泛化误差)如下:
\[R_{L_{\text{abst}}}(h, r) = \mathbb{E}{p(x, y)}\left[L{\text{abst}}(h, r, x, y)\right], \quad R_{L}(h, r) = \mathbb{E}_{p(x, y)}\left[L(h, r, x, y)\right] \]
设\(R_{{L}^{*}{\text{abst}}}(\mathcal{H}, \mathcal{R}) = \inf{h\in \mathcal{H}, r\in \mathcal{R}}R_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R})\)和\(R_{L}^{*}(\mathcal{H}, \mathcal{R}) = \inf_{h\in \mathcal{H}, r\in \mathcal{R}}R_{L}(\mathcal{H}, \mathcal{R})\)分别为\(R_{L_{\text{abst}}}\)和\(R_L\)在\(\mathcal{H}\times \mathcal{R}\)上的下确界。
为了进一步简化后续的分析,我们根据概率的乘法规则将\(R_L(h, r)\)写为:
\[R_{L}(h, r) = \mathbb{E}{p(x, y)}\left[L(h, r, x, y)\right] = \mathbb{E}{p(x)}\underbrace{\left[\mathbb{E}{p(y\mid x)}\left[L(h, r, x, y)\right]\right]}{\text{conditional risk }C_L} \]
我们称其中内层的条件期望项为代理损失\(L\)的条件风险(conditional risk) (也称为代理损失\(L\)的pointwise风险),由于在其计算过程中\(y\)取期望取掉了,因此该项只和\(h\)、\(r\)、\(x\)相关,因此我们将其记为\(C_L(h, r, x)\):
\[C_L(h, r, x) = \mathbb{E}{p(y\mid x)}\left[L(h, r, x, y)\right] = \sum{y\in \mathcal{Y}}p(y\mid x)L(h, r, x, y) \]
我们用\(C^*L(\mathcal{H}, \mathcal{R}, x) = \inf{h\in \mathcal{H}, r\in \mathcal{R}} C_L(h, r, x)\)来表示假设类最优(best-in-class) 的\(L\)的条件风险。同理,我们用\(C_{L_{\text{abst}}}\)来表示目标损失\(L_{\text{abst}}\)的条件风险,并用\(C^*{L{\text{abst}}}\)来表示假设类最优的\(L_{\text{abst}}\)的条件风险。
根据\(R_{L}^*(h, r)\)和\(C^*_L(\mathcal{H}, \mathcal{R}, x)\),我们可以表示出最小化能力差距(minimizability gap):
\[M_L(\mathcal{H}, \mathcal{R}) = R_{L}^*(\mathcal{H}, \mathcal{R}) - \mathbb{E}_{p(x)}\left[C_L^*(\mathcal{H}, \mathcal{R}, x)\right] \]
\(M_{L_{\text{abst}}}\)的表示同理。
于是,我们可以对要证明的\((\mathcal{H}, \mathcal{R})\)-一致性界进行改写:
\[R_{L_{\text{abst}}}(h, r) - R_{L_{\text{abst}}}^{*}(\mathcal{H}, \mathcal{R}) + M_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}) \leqslant \Gamma(R_L(h, r) - R_{L}^{*}(\mathcal{H}, \mathcal{R}) + M_{L}(\mathcal{H}, \mathcal{R}))\\ \Rightarrow R_{L_{\text{abst}}}(h, r) - \mathbb{E}{p(x)}\left[C{L_{\text{abst}}}^*(\mathcal{H}, \mathcal{R}, x)\right] \leqslant \Gamma\left(R_{L}(h, r) - \mathbb{E}{p(x)}\left[C{L}^*(\mathcal{H}, \mathcal{R}, x)\right]\right) \]
其中\(R_{L_{\text{abst}}}(h, r)\)和\(R_L(h, r)\)分别为\(\mathbb{E}{p(x)}C{L_{\text{abst}}}(h, r, x)\)和\(\mathbb{E}{p(x)}C{L}(h, r, x)\),于是上述不等式即为
\[\mathbb{E}{p(x)}\underbrace{\left[C{L_{\text{abst}}}(h, r, x) - C_{L_{\text{abst}}}^*(\mathcal{H}, \mathcal{R}, x)\right]}{\Delta C{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)} \leqslant \Gamma\left(\mathbb{E}{p(x)}\underbrace{\left[C{L}(h, r, x) - C_{L}^*(\mathcal{H}, \mathcal{R}, x)\right]}{\Delta C{L, \mathcal{H}, \mathcal{R}}(h, r, x)}\right) \]
我们将上述不等式两边的被取期望的项简记为\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)和\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\),其中\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)被称为校准差距(calibration gap) 。由于按定义\(\Gamma(\cdot)\)是凹函数,由Jensen不等式有:
\[\mathbb{E}{p(x)}\left[\Gamma\left(\Delta C{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\right] \leqslant \Gamma\left(\mathbb{E}{p(x)}\left[\Delta C{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right]\right) \]
于是,若我们能证明下述不等式,则原不等式得证:
\[\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right) \]
我们后面将会看到,\((\mathcal{H}, \mathcal{R})\)-一致性界的证明过程中重要的一步即是证明\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)能被\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)界定。
3 \(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)的表示
我们先来看\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = C_{L_{\text{abst}}}(h, r, x) - C^*{L{\text{abst}}}(\mathcal{H}, \mathcal{R}, x)\)如何表示。根据定义,我们有:
\[\begin{aligned} C_{L_{\text{abst}}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x)L_{\text{abst}}(h, r, x, y) \\ &= \sum_{y\in \mathcal{Y}}p(y\mid x) \mathbb{I}{\text{h}(x) \neq y}\mathbb{I}{r(x) > 0} + c(x) \mathbb{I}_{r(x)\leqslant 0} \end{aligned} \]
由于是关于\(y\)的条件期望,上式最后一行中只需要对\(\mathbb{I}{\text{h}(x) \neq y}\)进行加权求和即可。为了进一步对\(C{L_{\text{abst}}}(h, r, x)\)进行表示,我们需要对\(r(x)\)的正负情况进行分类讨论:
- \(r(x) > 0\):此时\(C_{L_{\text{abst}}}(h, r, x) = \sum_{y\in \mathcal{Y}}p(y\mid x) \mathbb{I}_{\text{h}(x) \neq y} = 1 - p(\text{h}(x)\mid x)\)。
- \(r(x) \leqslant 0\):此时\(C_{L_{\text{abst}}}(h, r, x) = c\)。
接下来我们来看\(C^*{L{\text{abst}}}\)如何表示。我们假设拒绝函数集\(\mathcal{R}\)是完备的(也即对任意\(x\in \mathcal{X}, \{r(x): r\in \mathcal{R}\} = \mathbb{R}\)),那么\(\mathcal{R}\)也是弃权正规的(也即使得对任意\(x\in \mathcal{X}\),存在\(r_1, r_2\in \mathcal{R}\)满足\(r_1(x) > 0\)与\(r_2(x) \leqslant 0\))。于是我们有
\[\begin{aligned} C^*{L{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) &= \inf_{h\in \mathcal{H}, r\in \mathcal{R}}C_{L_{\text{abst}}}(h, r, x)\\ & = \min \left\{\min_{h\in \mathcal{H}}\left(1 - p\left( \text{h}(x)\mid x\right)\right), c\right\}\\ & = 1 - \max\left\{\max_{h\in \mathcal{H}}p\left(\text{h}(x)\mid x\right), 1 - c\right\} \end{aligned} \]
我们假设\(\mathcal{H}\)是对称的且完备的(具体定义参见博客《学习理论:预测器-拒绝器多分类弃权学习》),则我们有\(\{\text{h}(x): h\in \mathcal{H}\} = \mathcal{Y}\),于是
\[C^*{L{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) = 1 - \max\left\{\max_{y\in \mathcal{Y}}p\left(y\mid x\right), 1 - c\right\} \]
为了进一步对\(C^*{L{\text{abst}}}(\mathcal{H}, \mathcal{y}, x)\)进行表示,我们需要对\(\max_{y\in \mathcal{Y}}p(y\mid x)\)和\((1 - c)\)的大小比较情况进行分类讨论:
- \(\max_{y\in \mathcal{Y}}p(y\mid x) > 1 - c\):此时\(C^*{L{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) = 1 - \max_{y\in \mathcal{Y}}p(y\mid x)\)。
- \(\max_{y\in \mathcal{Y}}p(y\mid x) \leqslant 1 - c\):此时\(C^*{L{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) = c\)。
于是,我们有:
\[\begin{aligned} \Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_{L_{\text{abst}}}(h, r, x) - C^*{L{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) \\ & = \left\{\begin{aligned} &\max_{y\in \mathcal{Y}}p(y\mid x) - p(\text{h}(x)\mid x)\quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c),r(x) > 0 \\ &1 - c - p(\text{h}(x)\mid x) \quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c),r(x) > 0 \\ &0 \quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c),r(x) \leqslant 0 \\ &\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c \quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c),r(x) \leqslant 0 \\ \end{aligned}\right. \end{aligned} \]
4 \(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)的表示
4.1 分类讨论的准备
接下来我们来看\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) = C_L(h, r, x) - C^*_L(\mathcal{H}, \mathcal{R}, x)\)如何表示。根据定义,若\(\alpha = \beta\),\(\phi(z) = \exp(-z)\),我们有:
\[\begin{aligned} C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x)L(h, r, x, y) \\ &= \sum_{y\in \mathcal{Y}}p(y\mid x) \mathcal{l}(h, x, y)e^{\alpha r(x)} + \psi(c) e^{-\alpha r(x)} \end{aligned} \]
由于是关于\(y\)的条件期望,上式最后一行中只需要对\(\mathcal{l}(h, x, y)\)进行加权求和即可。在后文中我们将会针对下列三种不同的\(\mathcal{l}\)函数以及\(\psi(z)\)的选择情况来分别对\(C_L(h, r, x)\)进行讨论:
- \(\mathcal{l} = \mathcal{l}_{\text{mae}}\),\(\psi(z) = z\);
- \(\mathcal{l} = \mathcal{l}_{\rho}\),\(\psi(z) = z\);
- \(\mathcal{l} = \mathcal{l}_{\rho-\text{hinge}}\),\(\psi(z) = nz\)。
注 这三种不同\(\mathcal{l}\)的定义参见博客《学习理论:预测器-拒绝器多分类弃权学习》),我在这里把它们的定义贴一下:
- 平均绝对误差损失:\(\mathcal{l}{\text{mae}}(h, x, y) = 1 - \frac{e^{{h(x)}y}}{\sum{y^{\prime}\in \mathcal{Y}}e^{{h(x)}{y^{\prime}}}}\);
- 约束\(\rho\)-合页损失:\(\mathcal{l}{\rho-\text{hinge}}(h, x, y) = \sum{y^{\prime}\neq y}\phi_{\rho-\text{hinge}}(-{h(x)}{y^{\prime}}), \rho > 0\),其中\(\phi{\rho-\text{hinge}}(z) = \max\{0, 1 - \frac{z}{\rho}\}\)为\(\rho\)-合页损失,且约束条件\(\sum_{y\in \mathcal{Y}}{h(x)}_y=0\)。
- \(\rho\)-间隔损失:\(\mathcal{l}{\rho}(h, x, y) = \phi{\rho}({\rho_h (x, y)})\),其中\(\rho_{h}(x, y) = h(x)y - \max{y^{\prime} \neq y}h(x){y^{\prime}}\)是置信度间隔,\(\phi{\rho}(z) = \min\{\max\{0, 1 - \frac{z}{\rho}\}, 1\}, \rho > 0\)为\(\rho\)-间隔损失。
4.2 \(\mathcal{l} = \mathcal{l}_{\text{mae}}\),\(\psi(z) = z\)
在这种情况下\(C_L(h, r, x)\)可以表示为:
\[\begin{aligned} C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \underbrace{\left(1 - \frac{e^{{h(x)}y}}{\sum{y^{\prime}\in \mathcal{Y}}e^{{h(x)}{y^{\prime}}}}\right)}{\mathcal{l}{\text{mae}}}e^{\alpha r(x)} + c e^{-\alpha r(x)} \\ &= \sum{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} \end{aligned} \]
其中\(s_h(x, y) = \frac{e^{{h(x)}y}}{\sum{y^{\prime}\in \mathcal{Y}}e^{{h(x)}_{y^{\prime}}}}\)。
于是
\[\begin{aligned} C_L^*(\mathcal{H}, \mathcal{R}, x) &= \inf_{h\in \mathcal{H}, r\in\mathcal{R}} \left\{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)}\right\} \\ &= \inf_{r\in\mathcal{R}} \left\{\inf_{h\in \mathcal{H}}\left\{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)\right\}e^{\alpha r(x)} + c e^{-\alpha r(x)}\right\} \end{aligned} \]
由于假设了\(\mathcal{H}\)是对称的与完备的,我们有
\[\begin{aligned} &\inf_{h\in \mathcal{H}}\left\{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y\right))\right\} \\ &= 1 - \sup_{h\in \mathcal{H}}\sum_{y\in \mathcal{Y}}p(y\mid x)s_h(x, y) \\ &= 1 - \max_{y\in \mathcal{Y}}p(y\mid x)\quad \left(s_h(x, y)\in (0, 1)\right) \end{aligned} \]
注 实际上,对任意\(h\in \mathcal{H}\),有:
\[\begin{aligned} &\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\ &= \max_{y\in \mathcal{Y}} p(y\mid x) - \sum_{y\in \mathcal{Y}}p(y\mid x)s_h(x, y) \\ &= \max_{y\in \mathcal{Y}} p(y\mid x) - \left(p\left(\text{h}(x)\mid x\right)s_h\left(x, \text{h}(x)\right) + \sum_{y\neq \text{h}(x)}p(y\mid x)s_h(x, y)\right) \\ &\geqslant \max_{y\in \mathcal{Y}} p(y\mid x) - \left(p\left(\text{h}(x)\mid x\right)s_h\left(x, \text{h}(x)\right) + \max_{y\in \mathcal{Y}}p(y\mid x)\left(1 - s_h\left(x, \text{h}(x)\right)\right)\right) \\ &= s_h\left(x, \text{h}(x)\right)\left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) \\ &\geqslant \frac{1}{n} \left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) \end{aligned} \]
这个结论我们会在后面的证明中多次用到。该结论的一个推论是如果分类器\(h^*\)为贝叶斯最优分类器(也即\(p(\text{h}^*(x)\mid x) = \max_{y\in \mathcal{Y}} p(y\mid x)\)),则\(\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right) \geqslant 0\),可直观地将其理解为\(\mathbb{E}{p(y\mid x)}\left[\mathcal{l}{\text{mae}}\right]\)更可能接近其下确界。
于是
\[C_L^*(\mathcal{H}, \mathcal{R}, x) = \inf_{r\in\mathcal{R}} \left\{\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)}\right\} \]
记上式中需要求极值的部分为泛函\(F(r)\),则其泛函导数为
\[\frac{\delta F}{\delta r(x)} = \alpha \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)e^{\alpha r(x)} - c\alpha e^{-\alpha r(x)} \]
令\(\frac{\delta F}{\delta p(x)} = 0\)(对\(\forall x\in \mathcal{X}\)),解得\(r^*(x) = -\frac{1}{2\alpha}\log \left(\frac{1 - \max_{y\in \mathcal{Y}}p(y\mid x)}{c}\right)\)。将其代入\(F(r)\)可得:
\[C_L^*(\mathcal{H}, \mathcal{R}, x) = 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p(y\mid x))} \]
于是
\[\begin{aligned} \Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_L(h, r, x) - C^*L(\mathcal{H}, \mathcal{R}, x) \\ &= \sum{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p(y\mid x))} \end{aligned} \]
为了构建\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)和\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)的不等式关系,接下来我们将会采用第3节中类似的做法,针对\(\max_{y\in \mathcal{Y}} p(y\mid x)\)与\(1 - c\)的大小比较情况与\(r(x)\)的正负情况来对\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)进行分类讨论:
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\),\(r(x) > 0\):
此时
\[\begin{aligned} \Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\ & \geqslant \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - \left(c + \underbrace{\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)}{<c}\right) \\ & \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (\text{AM-GM inequality}) \\ &\geqslant \sum{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - ce^{-\alpha r(x)} - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)e^{\alpha r(x)} \\ &\geqslant \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)\\ &\geqslant \frac{1}{n} \left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) \\ &= \frac{1}{n} \Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \end{aligned} \]
(其中\(\text{AM-GM inequality}\)为算术-几何平均值不等式)
取\(\Gamma (z) = nz\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)得证。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\),\(r(x) > 0\):
\[ \begin{aligned} \Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\ & \geqslant \underbrace{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h\left(x, y\right)\right)}{\geqslant c}e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(\sum{y\in \mathcal{Y}}p(y\mid x)\left(1 - s_h(x, y)\right)\right)} \\ & \geqslant \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) + c - 2\sqrt{c\left(\sum_{y\in \mathcal{Y}}p(y\mid x)\left(1 - s_h(x, y)\right)\right)} \\ &= \left(\sqrt{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)} - \sqrt{c}\right)^2 \\ &= \left(\frac{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - c}{\sqrt{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)} + \sqrt{c}}\right)^2 \\ &\geqslant \left(\frac{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right) + \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x) - c\right)}{2}\right)^2 \\ &\geqslant \left(\frac{\frac{1}{n} \left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) + \frac{1}{n}\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x) - c\right)}{2}\right)^2 \\ &= \frac{1}{4n^2}\left(1 - c - p\left(\text{h}(x)\mid x\right)\right)^2 \\ &= \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4n^2} \end{aligned} \]
取\(\Gamma (z) = 2n\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)得证。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\),\(r(x) \leqslant 0\):
由于此时\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = 0\),因此\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma\left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)对任意\(\Gamma \geqslant 0\)成立。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\),\(r(x) \leqslant 0\):
\[ \begin{aligned} \Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\ &\geqslant \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)\underbrace{e^{\alpha r(x)}}{\leqslant 1} + c \underbrace{e^{-\alpha r(x)}}{\geqslant 1} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\ &\geqslant 1 - \max_{y\in \mathcal{Y}}p(y\mid x) + c - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\ &= \left(\sqrt{1 - \max_{y\in \mathcal{Y}}p(y\mid x)} - \sqrt{c}\right)^2 \\ &= \left(\frac{1 - \max_{y\in \mathcal{Y}}p(y\mid x) - c}{\sqrt{1 - \max_{y\in \mathcal{Y}}p(y\mid x)} + \sqrt{c}}\right)^2 \\ &\geqslant \left(\frac{\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c}{2}\right)^2 \\ &= \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4} \end{aligned} \]
取\(\Gamma (z) = 2\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)得证。
综上所述,若取\(\Gamma(z) = \max\{\Gamma_1(z), \Gamma_2(z), \Gamma_3(z)\} = \max\{2n\sqrt{z}, nz\}\),则恒有\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)。于是\(\mathcal{l} = \mathcal{l}_{\text{mae}}\),\(\psi(z) = z\)时单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界得证。
4.3 \(\mathcal{l} = \mathcal{l}_{\rho}\),\(\psi(z) = z\)
在这种情况下\(C_L(h, r, x)\)可以表示为:
\[\begin{aligned} C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \underbrace{\min\left\{\max\left\{0, 1 - \frac{\rho_h(x, y)}{\rho}\right\}, 1\right\}}{\mathcal{l}{\rho}}e^{\alpha r(x)} + c e^{-\alpha r(x)} \\ &= \left(1 - \sum_{y\in \mathcal{Y}} p(y\mid x)\max\left\{\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}, 0\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} \\ &= \left(1 - \sum_{y\in \mathcal{Y}} p(y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} \end{aligned} \]
其中\(\rho_h(x, y) = h(x)y - \max{y^{\prime}\neq y}h(x)_{y^{\prime}}\)为间隔。
由于假设了\(\mathcal{H}\)是对称的与完备的,我们有
\[\begin{aligned} &\inf_{h\in \mathcal{H}}\left\{1 - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right\} \\ &= 1 - \sup_{h\in \mathcal{H}}\sum_{y\in \mathcal{Y}}p(y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\} \\ &= 1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\quad (\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\in [0, 1]) \end{aligned} \]
注 实际上,对任意\(h\in \mathcal{H}\),有:
\[\begin{aligned} &\left(1 - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right) - \left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\ &= \max_{y\in \mathcal{Y}} p(y\mid x) - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\} \\ &= \max_{y\in \mathcal{Y}} p(y\mid x) - \min \left\{1, \frac{\rho_h\left(x, \text{h}(x)\right)}{\rho}\right\}p\left(\text{h}(x)\mid x\right) \\ &\geqslant \max_{y\in \mathcal{Y}}p\left(y\mid x\right) - p\left(\text{h}(x)\mid x\right) \end{aligned} \]
和之前\(\mathcal{l}_{\text{mae}}\)的证明类似,这个结论我们会在后面的证明中多次用到。
于是和之前\(\mathcal{l}_{\text{mae}}\)类似,我们有
\[C_L^*(\mathcal{H}, \mathcal{R}, x) = 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right))} \]
于是
\[\begin{aligned} \Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_L(h, r, x) - C^*L(\mathcal{H}, \mathcal{R}, x) \\ &= \left(1 - \sum{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right))} \end{aligned} \]
为了构建\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)和\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)的不等式关系,接下来我们将会采用\(\mathcal{l}{\text{mae}}\)的证明中类似的做法,针对\(\max{y\in \mathcal{Y}} p(y\mid x)\)与\(1 - c\)的大小比较情况与\(r(x)\)的正负情况来对\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)进行分类讨论:
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\),\(r(x) > 0\):
此时
\[\begin{aligned} \Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \left(1 - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right)} \\ &\geqslant \frac{1}{4}\left(1 - c - p\left(\text{h}\left(x\right)\mid x\right)\right)^2 \\ &= \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4} \end{aligned} \]
(由于证明步骤与\(\mathcal{l}_{\text{mae}}\)类似,这里对证明步骤进行了一些精简,下面同理)
取\(\Gamma_2 (z) = 2\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\),\(r(x) > 0\):
\[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \max_{y\in \mathcal{Y}}p(y\mid x) - p(\text{h}(x)\mid x) = \Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \]
取\(\Gamma_1 (z) = z\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\),\(r(x) \leqslant 0\):
由于此时\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = 0\),因此\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)对任意\(\Gamma \geqslant 0\)成立。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\),\(r(x) \leqslant 0\):
\[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \left(\frac{\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c}{2}\right)^2 = \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4} \]
取\(\Gamma_3 (z) = 2\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。
综上所述,若取\(\Gamma(z) = \max\{\Gamma_1(z), \Gamma_2(z), \Gamma_3(z)\} = \max\{2\sqrt{z}, z\}\),则恒有\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)。于是\(\mathcal{l} = \mathcal{l}_{\rho}\),\(\psi(z) = z\)时单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界得证。
4.4 \(\mathcal{l} = \mathcal{l}_{\rho-\text{hinge}}\),\(\psi(z) = nz\)
在这种情况下\(C_L(h, r, x)\)可以表示为:
\[\begin{aligned} C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \underbrace{\sum_{y^{\prime} \neq y}\max\left\{0, 1 + \frac{h(x){y^{\prime}}}{\rho}\right\}}{\mathcal{l}{\rho}-\text{hinge}}e^{\alpha r(x)} + nce^{-\alpha r(x)} \\ &= \sum{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\}e^{\alpha r(x)} + nce^{-\alpha r(x)} \\ \end{aligned} \]
由于假设了\(\mathcal{H}\)是对称的与完备的,我们有
\[\begin{aligned} &\inf_{h\in \mathcal{H}}\left\{\sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)y}{\rho}\right\}\right\} \\ &= n - \sup{h\in \mathcal{H}}\sum_{y\in \mathcal{Y}}p(y\mid x)\max\left\{0, 1 + \frac{h(x)y}{\rho}\right\} \\ &= n\left(1 - \max{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \end{aligned} \]
注 实际上,若取\(h_{\rho}\)使得\(h_{\rho}(x)y = \left\{\begin{aligned} &h(x)y\quad &\text{if } y\notin \left\{y{\max}, \text{h}(x)\right\} \\ &-\rho \quad &\text{if } y = \text{h}(x) \\ &h\left(x\right){y_{\text{max}}} + h\left(x\right){\text{h}(x)} + \rho \quad &\text{if } y = y{\text{max}} \\ \end{aligned}\right.\)满足约束\(\sum_{y\in \mathcal{Y}}h_{\rho}(y\mid x)=0\),其中\(y_{\max} = \text{arg max}_{y\in \mathcal{Y}}p(y\mid x)\),则对任意\(h\in \mathcal{H}\)有:
\[\begin{aligned} &\sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)y}{\rho}\right\} - n\left(1 - \max{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\ &\geqslant \sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\min\left\{n, \max\left\{0, 1 + \frac{h(x)y}{\rho}\right\}\right\} - n\left(1 - \max{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\ &\geqslant \sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\min\left\{n, \max\left\{0, 1 + \frac{h(x)y}{\rho}\right\}\right\} \\ &\quad - \sum{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\min\left\{n, \max\left\{0, 1 + \frac{h_{\rho}(x)y}{\rho}\right\}\right\} \\ &= \left(p(y{\text{max}}\mid x) - p(\text{h}(x)\mid x)\right)\min\left\{n, 1 + \frac{h(x){\text{h}(x)}}{\rho}\right\} \\ &\geqslant \max{y\in \mathcal{Y}}p\left(y\mid x\right) - p\left(\text{h}\left(x\right)\mid x\right) \end{aligned} \]
和之前\(\mathcal{l}{mae}\)、\(\mathcal{l}{\rho}\)的证明类似,这个结论我们会在后面的证明中多次用到。
于是和之前\(\mathcal{l}{mae}\)、\(\mathcal{l}{\rho}\)类似,我们有
\[C_L^*(\mathcal{H}, \mathcal{R}, x) = 2\sqrt{n^2c(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right))} \]
于是
\[\begin{aligned} \Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_L(h, r, x) - C^*L(\mathcal{H}, \mathcal{R}, x) \\ &= \sum{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)y}{\rho}\right\}e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c(1 - \max{y\in \mathcal{Y}}p\left(y\mid x\right))} \end{aligned} \]
为了构建\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)和\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)的不等式关系,接下来我们将会采用\(\mathcal{l}{\text{mae}}\)、\(\mathcal{l}{\rho}\)的证明中类似的做法,针对\(\max_{y\in \mathcal{Y}} p(y\mid x)\)与\(1 - c\)的大小比较情况与\(r(x)\)的正负情况来对\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)进行分类讨论:
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\),\(r(x) > 0\):
此时
\[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \max_{y\in \mathcal{Y}}p(y\mid x) - p(\text{h}(x)\mid x) = \Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2 \]
取\(\Gamma_1 (z) = z\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\),\(r(x) > 0\):
\[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \frac{1}{4n}\left(1 - c - p\left(\text{h}\left(x\right)\mid x\right)\right)^2 = \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4n} \]
取\(\Gamma_1 (z) = 2\sqrt{nz}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\),\(r(x) \leqslant 0\):
由于此时\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = 0\),因此\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)对任意\(\Gamma \geqslant 0\)成立。
-
\(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\),\(r(x) \leqslant 0\):
\[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant n\left(\frac{\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c}{2}\right)^2 = \frac{n\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4} \]
取\(\Gamma_3 (z) = 2\sqrt{z/n}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。
综上所述,若取\(\Gamma(z) = \max\{\Gamma_1(z), \Gamma_2(z), \Gamma_3(z)\} = \max\{2\sqrt{nz}, z\}\),则恒有\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)。于是\(\mathcal{l} = \mathcal{l}_{\rho-\text{hinge}}\),\(\psi(z) = nz\)时单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界得证。
参考
- [1] Mao A, Mohri M, Zhong Y. Predictor-rejector multi-class abstention: Theoretical analysis and algorithms[C]//International Conference on Algorithmic Learning Theory. PMLR, 2024: 822-867.
- [2] Cortes C, DeSalvo G, Mohri M. Boosting with abstention[J]. Advances in Neural Information Processing Systems, 2016, 29.
- [3] Ni C, Charoenphakdee N, Honda J, et al. On the calibration of multiclass classification with rejection[J]. Advances in Neural Information Processing Systems, 2019, 32.
- [4] Han Bao: Learning Theory Bridges Loss Functions
- [5] Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines[J]. Journal of machine learning research, 2001, 2(Dec): 265-292.
- [6] Awasthi P, Mao A, Mohri M, et al. Multi-Class $ H $-Consistency Bounds[J]. Advances in neural information processing systems, 2022, 35: 782-795.