每一个神经元做的是一个类似回归的操作

最后一层是softmax函数,每一个输出就会变成一个0到1之间的数,也就是概率,然后他们之间的和加起来等于1,到底是哪一个分类就是看哪个神经元的这个值最大。

那么如何算损失呢:
加入现在有0.2,0.7,0.1,会把他们变成one-hot编码,比如0.2就变成010,损失就是在他们之间求损失,使用交叉熵公式。

用每一个真实值yic乘以log概率值:

与均方误差来计算损失相比,交叉熵更能捕捉到预测变化的差异
最后一层是softmax函数,每一个输出就会变成一个0到1之间的数,也就是概率,然后他们之间的和加起来等于1,到底是哪一个分类就是看哪个神经元的这个值最大。
那么如何算损失呢:
加入现在有0.2,0.7,0.1,会把他们变成one-hot编码,比如0.2就变成010,损失就是在他们之间求损失,使用交叉熵公式。
用每一个真实值yic乘以log概率值:
与均方误差来计算损失相比,交叉熵更能捕捉到预测变化的差异