深度学习神经网络分类原理

每一个神经元做的是一个类似回归的操作

最后一层是softmax函数,每一个输出就会变成一个0到1之间的数,也就是概率,然后他们之间的和加起来等于1,到底是哪一个分类就是看哪个神经元的这个值最大。

那么如何算损失呢:

加入现在有0.2,0.7,0.1,会把他们变成one-hot编码,比如0.2就变成010,损失就是在他们之间求损失,使用交叉熵公式。

用每一个真实值yic乘以log概率值:

与均方误差来计算损失相比,交叉熵更能捕捉到预测变化的差异

相关推荐
AI视觉网奇2 小时前
rknn yolo11 推理
前端·人工智能·python
AI数据皮皮侠3 小时前
中国各省森林覆盖率等数据(2000-2023年)
大数据·人工智能·python·深度学习·机器学习
西柚小萌新4 小时前
【深入浅出PyTorch】--3.1.PyTorch组成模块1
人工智能·pytorch·python
鑫宝的学习笔记5 小时前
Vmware虚拟机联网问题,显示:线缆已拔出!!!
人工智能·ubuntu
小李独爱秋5 小时前
机器学习中的聚类理论与K-means算法详解
人工智能·算法·机器学习·支持向量机·kmeans·聚类
comli_cn6 小时前
GSPO论文阅读
论文阅读·人工智能
大有数据可视化6 小时前
数字孪生背后的大数据技术:时序数据库为何是关键?
大数据·数据库·人工智能
Bioinfo Guy6 小时前
Genome Med|RAG-HPO做表型注释:学习一下大语言模型怎么作为发文思路
人工智能·大语言模型·多组学
张较瘦_7 小时前
[论文阅读] AI + 软件工程(Debug)| 告别 “猜 bug”:TreeMind 用 LLM+MCTS 破解 Android 不完整报告复现难题
论文阅读·人工智能·bug
深栈7 小时前
机器学习:线性回归
人工智能·pytorch·python·机器学习·线性回归·sklearn