深度学习神经网络分类原理

每一个神经元做的是一个类似回归的操作

最后一层是softmax函数,每一个输出就会变成一个0到1之间的数,也就是概率,然后他们之间的和加起来等于1,到底是哪一个分类就是看哪个神经元的这个值最大。

那么如何算损失呢:

加入现在有0.2,0.7,0.1,会把他们变成one-hot编码,比如0.2就变成010,损失就是在他们之间求损失,使用交叉熵公式。

用每一个真实值yic乘以log概率值:

与均方误差来计算损失相比,交叉熵更能捕捉到预测变化的差异

相关推荐
人邮异步社区12 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习
paceboy12 小时前
Claude和Cursor之间的切换
人工智能·程序人生
GISer_Jing12 小时前
AI营销增长:4大核心能力+前端落地指南
前端·javascript·人工智能
驴友花雕12 小时前
【花雕动手做】CanMV K230 AI视觉识别模块之使用CanMV IDE调试运行人脸代码
ide·人工智能·单片机·嵌入式硬件·canmv k230 ai视觉·canmv ide 人脸代码
猫头虎12 小时前
又又又双叒叕一款AI IDE发布,国内第五款国产AI IDE Qoder来了
ide·人工智能·langchain·prompt·aigc·intellij-idea·ai编程
weixin_3875456412 小时前
Antigravity 上手指南:打造 VS Code 风格的 AI IDE
ide·人工智能
程序届的伪精英12 小时前
IDE TRAE介绍与使用
ide·人工智能
资深程序员 哈克(21年开发经验)12 小时前
2025 年 AI编程软件 IDE 的深入对比与推荐排行:从好用到生成效果的转变
人工智能·ai编程
奇树谦12 小时前
2025 嵌入式 AI IDE 全面对比:Trae、Copilot、Windsurf、Cursor 谁最值得个人开发者入手?
ide·人工智能·copilot
深度学习实战训练营13 小时前
U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏
人工智能·深度学习