深度学习神经网络分类原理

每一个神经元做的是一个类似回归的操作

最后一层是softmax函数,每一个输出就会变成一个0到1之间的数,也就是概率,然后他们之间的和加起来等于1,到底是哪一个分类就是看哪个神经元的这个值最大。

那么如何算损失呢:

加入现在有0.2,0.7,0.1,会把他们变成one-hot编码,比如0.2就变成010,损失就是在他们之间求损失,使用交叉熵公式。

用每一个真实值yic乘以log概率值:

与均方误差来计算损失相比,交叉熵更能捕捉到预测变化的差异

相关推荐
勿在浮沙筑高台27 分钟前
海龟交易系统R
前端·人工智能·r语言
阿水实证通34 分钟前
面向社科研究者:用深度学习做因果推断(二)
深度学习·1024程序员节·因果推断·实证分析·科研创新
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】口罩数据集,口罩佩戴识别数据集 1971 张,YOLO佩戴口罩检测算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·ai·视觉检测
文火冰糖的硅基工坊1 小时前
[人工智能-大模型-83]:模型层技术 - 前向预测:神经网络是如何产生涌现智能的?背后的本质是什么?
人工智能·深度学习·神经网络
taxunjishu1 小时前
西门子 1500 PLC 依托 Ethernet/ip 转 Modbus RTU联合发那科机器人优化生产流程
人工智能·区块链·工业物联网·工业自动化·总线协议
一介书生-0072 小时前
2025-10-27 Java AI学习路线
java·人工智能·学习
rengang662 小时前
AI辅助需求分析:AI大模型将自然语言需求转化为技术规格
人工智能·需求分析·ai编程·1024程序员节·ai智能体编程
子不语1802 小时前
深度学习——IDE之Jupyter
人工智能·深度学习·jupyter
AI小云2 小时前
【Python高级编程】类和实例化
开发语言·人工智能·python
格林威3 小时前
紫外工业相机入门介绍和工业检测核心场景
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测