3d投影到2d python opencv

目录

[cv2.projectPoints 投影](#cv2.projectPoints 投影)

矩阵计算投影


cv2.projectPoints 投影

cv2.projectPoints() 是 OpenCV 中的一个函数,用于将三维空间中的点(3D points)投影到二维图像平面上。这在计算机视觉中经常用于相机标定、物体姿态估计、3D物体与2D图像之间的映射等场景。

函数原型:

cv2.projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs)

objectPoints:3D点的集合,通常是物体的真实世界坐标。

rvec:旋转向量,表示物体相对于相机的旋转。

tvec:平移向量,表示物体相对于相机的位置。

cameraMatrix:相机的内参矩阵,通常通过相机标定得到。

distCoeffs:相机的畸变系数,通常是由相机标定得到的。

python 复制代码
import cv2
import numpy as np

# 定义 3D 点(假设这些点在一个立方体的表面上)
object_points = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)

# 定义相机内参矩阵
camera_matrix = np.array([[1000, 0, 320],  # fx, 0, cx
                                [0, 1000, 240],  # 0, fy, cy
                                [0, 0, 1]  # 0, 0, 1
], dtype=np.float32)

# 定义畸变系数(假设无畸变)
dist_coeffs = np.zeros((5, 1), dtype=np.float32)

# 定义相机外参(旋转向量和平移向量)
rvec = np.array([0, 0, 0], dtype=np.float32)  # 无旋转
tvec = np.array([0, 0, -10], dtype=np.float32)  # 相机在 Z 轴正方向 5 个单位处

# 将 3D 点投影到 2D 图像平面
image_points, _ = cv2.projectPoints(object_points, rvec, tvec, camera_matrix, dist_coeffs)

# 创建一个空白图像(用于可视化)
image = np.zeros((480, 640, 3), dtype=np.uint8)

image_points=np.squeeze(image_points,axis=1)
print(image_points)
# 在图像上绘制投影点
for point in image_points:
    x, y = point.ravel()
    cv2.circle(image, (int(x), int(y)), 3, (0, 255, 0), -1)  # 绘制绿色圆点

# 显示图像
cv2.imshow("Projected Points", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

矩阵计算投影

内参,外参用的左乘

python 复制代码
import numpy as np
import cv2

# 定义相机内参矩阵 (3x3)
K = np.array([[1000, 0, 320],  # fx, 0, cx
              [0, 1000, 240],  # 0, fy, cy
              [0, 0, 1]])  # 0, 0, 1

# 定义相机外参:旋转矩阵 (3x3) 和平移向量 (3x1)
R = np.eye(3)  # 假设相机没有旋转
t = np.array([[0], [0], [-10]])  # 相机在Z轴负方向平移10个单位

# 生成随机3D点云 (Nx3)
num_points = 100
# points_3d = np.random.rand(num_points, 3) * 10  # 生成100个3D点,范围在[0, 10)

points_3d = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)


# 将3D点云从世界坐标系转换到相机坐标系
points_3d_cam = R @ points_3d.T + t  # 3xN
points_3d_cam = points_3d_cam.T  # 转置为Nx3

# 将3D点云投影到2D图像平面
points_2d_homogeneous = K @ points_3d_cam.T  # 3xN
points_2d = points_2d_homogeneous[:2, :] / points_2d_homogeneous[2, :]  # 归一化
points_2d = points_2d.T  # 转置为Nx2

# 创建空白图像
image_size = (640, 480)  # 图像尺寸
image = np.zeros((image_size[1], image_size[0], 3), dtype=np.uint8)

print(points_2d)
# 将2D点绘制到图像上
for point in points_2d:
    x, y = int(point[0]), int(point[1])
    if 0 <= x < image_size[0] and 0 <= y < image_size[1]:  # 确保点在图像范围内
        cv2.circle(image, (x, y), 3, (0, 255, 0), -1)  # 绘制绿色圆点

# 显示图像
cv2.imshow("2D Projection of Point Cloud", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结,两种方法的结果是一样的。

相关推荐
董厂长2 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T6 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼6 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间6 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享6 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾6 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码7 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5897 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien7 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松8 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能