Lifespan Brain MR 图像分割的知识引导式提示学习

文章目录

  • [Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation](#Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation)

Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation

摘要

背景: 在整个生命过程中,对脑部MR图像进行自动且精准的组织与结构分割,对于理解脑发育过程和疾病诊断至关重要。然而,由于早期脑发育的快速变化、衰老及疾病导致的复杂形态变异,以及手动标注数据的有限性,该任务面临诸多挑战。

目的: 针对这些问题,提出了一种基于知识引导提示学习(KGPL)的两步分割框架,以提升脑部MRI分割的准确性和鲁棒性。

方法: 该框架首先在大规模但标注质量欠佳的数据集上预训练分割模型,随后将从图像-文本对齐中学习到的知识驱动嵌入引入模型。通过知识感知提示(knowledge-wise prompts),模型能够捕捉解剖变异与生物过程之间的语义关系,从而学习适用于不同年龄群体的结构特征嵌入。

结果: 实验结果表明,该方法的优越性和鲁棒性尤为突出,特别是在采用Swin UNETR作为主干网络时表现最佳。该方法在脑组织和脑结构分割任务上的平均DSC值分别达到95.17%和94.19%。代码已公开,链接为 https://github.com/TL9792/KGPL

方法

图 1. 将知识引导的提示学习 (KGPL) 用于整个生命周期的脑部 MRI。上半部分显示了源域上的视觉预训练,下半部分显示了预训练模型的细化,并在目标域上提供了知识提示。采用从源域学习的权重来初始化目标域的模型,在冻结编码器的同时仅更新可学习的参数和解码器。

实验结果




相关推荐
码界奇点5 小时前
Python从0到100一站式学习路线图与实战指南
开发语言·python·学习·青少年编程·贴图
YJlio7 小时前
Active Directory 工具学习笔记(10.8):AdInsight——保存与导出(证据留存、共享与二次分析)
数据库·笔记·学习
噗噗夹的TA之旅10 小时前
Unity Shader 学习20:URP LitForwardPass PBR 解析
学习·unity·游戏引擎·图形渲染·技术美术
2401_8345170710 小时前
AD学习笔记-36 gerber文件输出
笔记·学习
气π10 小时前
【JavaWeb】——(若依 + AI)-基础学习笔记
java·spring boot·笔记·学习·java-ee·mybatis·ruoyi
深蓝海拓10 小时前
PySide6从0开始学习的笔记(三) 布局管理器与尺寸策略
笔记·python·qt·学习·pyqt
暗然而日章10 小时前
C++基础:Stanford CS106L学习笔记 8 继承
c++·笔记·学习
2401_8345170710 小时前
AD学习笔记-34 PCBlogo的添加
笔记·学习
被考核重击10 小时前
浏览器原理
前端·笔记·学习
Lynnxiaowen10 小时前
今天我们继续学习kubernetes内容Helm
linux·学习·容器·kubernetes·云计算