Lifespan Brain MR 图像分割的知识引导式提示学习

文章目录

  • [Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation](#Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation)

Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation

摘要

背景: 在整个生命过程中,对脑部MR图像进行自动且精准的组织与结构分割,对于理解脑发育过程和疾病诊断至关重要。然而,由于早期脑发育的快速变化、衰老及疾病导致的复杂形态变异,以及手动标注数据的有限性,该任务面临诸多挑战。

目的: 针对这些问题,提出了一种基于知识引导提示学习(KGPL)的两步分割框架,以提升脑部MRI分割的准确性和鲁棒性。

方法: 该框架首先在大规模但标注质量欠佳的数据集上预训练分割模型,随后将从图像-文本对齐中学习到的知识驱动嵌入引入模型。通过知识感知提示(knowledge-wise prompts),模型能够捕捉解剖变异与生物过程之间的语义关系,从而学习适用于不同年龄群体的结构特征嵌入。

结果: 实验结果表明,该方法的优越性和鲁棒性尤为突出,特别是在采用Swin UNETR作为主干网络时表现最佳。该方法在脑组织和脑结构分割任务上的平均DSC值分别达到95.17%和94.19%。代码已公开,链接为 https://github.com/TL9792/KGPL

方法

图 1. 将知识引导的提示学习 (KGPL) 用于整个生命周期的脑部 MRI。上半部分显示了源域上的视觉预训练,下半部分显示了预训练模型的细化,并在目标域上提供了知识提示。采用从源域学习的权重来初始化目标域的模型,在冻结编码器的同时仅更新可学习的参数和解码器。

实验结果




相关推荐
非凡ghost3 小时前
AMS PhotoMaster:全方位提升你的照片编辑体验
windows·学习·信息可视化·软件需求
云间月13145 小时前
飞算JavaAI智慧教育场景实践:从个性化学习到教学管理的全链路技术革新
学习·飞算javaai挑战赛
weixin_456904276 小时前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
Python私教8 小时前
从“Hello World”到“高并发中间件”:Go 语言 2025 系统学习路线图
学习·中间件·golang
Brookty10 小时前
【Java学习】锁、线程死锁、线程安全2
java·开发语言·学习·java-ee
HalvmånEver16 小时前
在 C++ :x86(32 位)和 x64(64 位)的不同
开发语言·c++·学习
艾伦~耶格尔20 小时前
【数据结构进阶】
java·开发语言·数据结构·学习·面试
Janspran20 小时前
嵌入式linux学习 -- 进程和线程
linux·运维·学习
rannn_1111 天前
【Javaweb学习|黑马笔记|Day1】初识,入门网页,HTML-CSS|常见的标签和样式|标题排版和样式、正文排版和样式
css·后端·学习·html·javaweb