蓝桥杯备考:动态规划dp之最大子段和

和之前的顺序一下

step1:

我们先确定状态表示 f[i]表示以i为终点的最大子段和

step2:确定状态表示方程

f[i]=f[i-1]+a[i],仅仅是这样吗?no absolutely not

我们假如以i-1为终点的最大字段和是负无穷,而a[i]是一个正数,那么 f[i-1]+a[i]肯定是比a[i]本身要小的,

所以我们真实的状态方程应该是f[i]=max(a[i],a[i]+f[i-1])

step3;初始化

我们数组下标从1开始,那么初始化f[1] 的时候 f[1]应该等于a[i] f[i-1]的值不应该影响最终结果

所以刚开始我们数组要初始化成0

为什么从下标1开始,这是为了防止越界

cpp 复制代码
#include <iostream>
using namespace std;
const int N = 2e5+10;
typedef long long LL;
LL f[N];
LL a[N];
LL n;
int main()
{
	cin >> n;
	for(LL i = 1;i<=n;i++)
	{
		cin >> a[i];
	}
	LL ret = -1e9;
	for(LL i = 1;i<=n;i++)
	{
		f[i] = max(f[i-1]+a[i],a[i]);
		ret = max(f[i],ret);
	}
	cout << ret << endl;
	
	
	
	
	
	return 0;
}

当然我们是可以对空间做一些优化的,比如说,我们不必开一个a[N]数组,我们有一个f[N]数组就足够了,我们用一个临时变量输入n次代表每个数就行了

cpp 复制代码
#include <iostream>
using namespace std;
const int N = 2e5+10;
typedef long long LL;
LL f[N];
LL a[N];
LL n;
int main()
{
	LL ret = -1e9;
	cin >> n;
	LL x;
	for(LL i = 1;i<=n;i++)
	{
		cin >> x;
		f[i] = max(f[i-1]+x,x);
		ret = max(f[i],ret); 
	}
	cout << ret << endl;
	
	
	
	
	
	return 0;
}
相关推荐
yaoh.wang3 小时前
力扣(LeetCode) 13: 罗马数字转整数 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
铭哥的编程日记7 小时前
后端面试通关笔记:从真题到思路(五)
面试·职场和发展
麦格芬2307 小时前
LeetCode 763 划分字母区间
算法·leetcode·职场和发展
面试鸭8 小时前
携程开启秋招补录
职场和发展·互联网
yaoh.wang9 小时前
力扣(LeetCode) 14: 最长公共前缀 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
业精于勤的牙11 小时前
浅谈:算法中的斐波那契数(三)
算法·职场和发展
ywwwwwwv12 小时前
力扣139
算法·leetcode·职场和发展
程序员麻辣烫12 小时前
傲慢与偏见
职场和发展
李玮豪Jimmy12 小时前
Day39:动态规划part12(115.不同的子序列、583.两个字符串的删除操作、72.编辑距离)
算法·动态规划
(●—●)橘子……15 小时前
记力扣557.反转字符串中的单词 练习理解
算法·leetcode·职场和发展