Dify 的核心技术栈

Dify 的技术栈涵盖多个层次,结合了前沿的 AI 框架、成熟的开发工具及高效的部署方案。

以下是其核心组成:

一、基础架构与后端技术

  1. 编程语言与框架

    • Python + Flask:后端服务主要基于 Python 开发,使用 Flask 框架构建 RESTful API 接口。

    • Celery:用于异步任务处理,支持分布式任务队列管理,提升复杂工作流的执行效率。

  2. 数据库与存储

    • PostgreSQL:作为核心关系型数据库,存储应用数据、用户信息等结构化内容。

    • Redis:用于缓存和会话管理,优化高频访问场景的性能。

    • Weaviate:作为向量搜索引擎,支撑 RAG(检索增强生成)管道的文档检索能力。

二、前端技术

  • React + ReactFlow:前端界面基于 React 开发,ReactFlow 用于可视化编排 AI 工作流(如 Chatflow 和 Workflow)。

  • TypeScript:结合 React 实现类型安全的组件开发,提升代码可维护性(根据技术栈推断)。

三、部署与运维工具

  • Docker:容器化部署后端服务和依赖组件,简化环境配置。

  • Nginx:作为反向代理服务器,处理 HTTP 请求负载均衡和静态资源服务。

四、AI 相关技术栈

  • 多模型支持:兼容数百个 LLM(如 GPT、Claude 等),支持灵活切换模型。

  • RAG 引擎:内置高质量的检索增强生成管道,支持文档解析(PDF、PPT 等格式)、向量化存储及语义搜索。

  • Agent 框架:基于 ReAct 或函数调用定义智能体,提供 50+ 内置工具(如谷歌搜索、图像生成等)。

五、其他关键技术

  • 任务调度与监控:通过 Celery 实现异步任务调度,结合日志系统实现 LLMOps(模型效果追踪与优化)。

  • 权限与安全:支持 OAuth、RBAC 等机制,并通过 Docker 隔离环境确保数据控制权。

小结

Dify 的技术栈设计兼顾开发效率与生产需求,从前端交互到后端处理、从数据存储到 AI 能力集成均采用成熟开源方案,同时通过模块化设计降低使用门槛。

更多细节可通过其开源代码(https://github.com/langgenius/dify)探索。

Link:https://www.cnblogs.com/farwish/p/18762336

相关推荐
何中应38 分钟前
快速上架第一个智能体
ai·大模型·智能体开发
视觉&物联智能2 小时前
【杂谈】-人工智能在风险管理中的应用:愿景与现实的差距
人工智能·网络安全·ai·aigc·agi
寻星探路2 小时前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
寻星探路3 小时前
【算法专题】哈希表:从“两数之和”到“最长连续序列”的深度解析
java·数据结构·人工智能·python·算法·ai·散列表
水中加点糖3 小时前
RagFlow实现多模态搜索(文、图、视频)与(关键字/相似度)搜索原理(二)
python·ai·音视频·knn·ragflow·多模态搜索·相似度搜索
-dcr3 小时前
50.智能体
前端·javascript·人工智能·ai·easyui
阿里巴巴P8资深技术专家3 小时前
Spring Boot 实现文档智能解析与向量化:支持 Tika、MinerU、OCR 与 SSE 实时进度反馈
ai·ocr·ai大模型·rag·文档解析·mineru·tike
向量引擎4 小时前
复刻“疯狂的鸽子”?用Python调用Sora2与Gemini-3-Pro实现全自动热点视频流水线(附源码解析)
开发语言·人工智能·python·gpt·ai·ai编程·api调用
太空眼睛4 小时前
【MCP】使用SpringBoot基于Streamable-HTTP构建MCP-Client
spring boot·ai·llm·sse·mcp·mcp-client·streamable
少林码僧18 小时前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归