【机器学习】强化学习(3)——深度强化学习的数学知识

深度学习的损失函数和反向传播涉及到很多数学知识,其原理解释在此。

1 似然估计

1.1 基本概念

似然估计贯穿于整个参数估计的过程,包含损失函数的定义、梯度的计算以及参数的更新。

  1. 定义:损失函数通常是似然函数,反映了模型预测的概率分布与真实数据分布之间的差异,定义这个损失函数是基于似然估计的原则。
  2. 梯度计算:在训练过程中,需要计算损失函数关于模型参数的梯度,这个梯度指示了参数空间中损失函数增加最快的方向。为了最小化损失函数,需要沿着梯度的反方向更新参数。计算梯度的过程也是基于似然估计的原则。
  3. 参数更新:在计算得到梯度后,使用优化算法(如梯度下降、Adam等)更新模型参数。这一步是似然估计的核心,通过更新参数来最小化损失函数。参数的更新是基于似然估计的目标。

1.2 最大似然估计

最大似然估计(Maximum Likelihood Estimation, MLE) 是统计学中的一种方法,用于估计概率模型中的参数。在给定数据 D = { x i , y i } i = 1 N D=\{x_i,y_i\}^N_{i=1} D={xi,yi}i=1N时,找到模型参数 θ \theta θ,使得数据出现的概率(似然)最大。

  • 似然函数:似然函数是给定参数下观测数据的概率, L ( θ ) = ∏ i = 1 N P ( y i ∣ x i ; θ ) L(\theta)=\prod_{i=1}^NP(y_i|x_i;\theta) L(θ)=∏i=1NP(yi∣xi;θ)。对于离散随机变量,似然函数是概率质量函数(PMF)的乘积;对于连续随机变量,似然函数是概率密度函数(PDF)的乘积。
  • 对数似然函数:为了简化计算,通常取似然函数的自然对数,得到对数似然函数, log ⁡ L ( θ ) = ∑ i = 1 N log ⁡ P ( y i ∣ x i ; θ ) \log L(\theta)=\sum_{i=1}^N \log P(y_i|x_i;\theta) logL(θ)=∑i=1NlogP(yi∣xi;θ)。

最大似然估计:最大似然估计是使似然函数或对数似然函数达到最大值的参数值。最大化对数似然等价于最小化负对数似然(Negative Log-Likelihood,NLL), J ( θ ) = − 1 N ∑ i = 1 N log ⁡ P ( y i ∣ x i ; θ ) J(\theta)=-\frac{1}{N}\sum_{i=1}^N \log P(y_i|x_i;\theta) J(θ)=−N1∑i=1NlogP(yi∣xi;θ),这通常是深度学习中的交叉熵损失。

1.3 对数似然(Log-Likelihood)

基本原理------对数的加法运算法则: log ⁡ a ( M N ) = log ⁡ a ( M ) + log ⁡ a ( N ) \log_a(MN)=\log_a(M)+\log_a(N) loga(MN)=loga(M)+loga(N)

直接对概率 P ( y ∣ x ; θ ) P(y|x;\theta) P(y∣x;θ)求导时,链式法则会导致复杂的计算(尤其是多层神经网络),对数梯度形式更易于计算。(建议再学习一下softmax概率交叉熵损失的梯度推导)

乘积形式的概率在计算时容易导致数值下溢,取对数可以将乘积转为求和,避免数值问题,同时对数函数的单调性保证最大化对数似然等价于最大化原始似然。

数值下溢(Underflow) 是计算机科学中一个常见的数值问题,指的是在计算过程中,某些数值变得非常小,以至于超出了计算机浮点数表示范围的下限,从而导致这些数值被近似为零的现象。

另外,对数转换后的梯度方差更小,有助于稳定训练。


【更新中,欢迎交流】

参考来源:

@ AIGC
策略梯度定理公式的详细推导

相关推荐
小oo呆2 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar2 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
飞桨PaddlePaddle2 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
绿算技术2 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
Y1nhl3 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰3 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调
yuanlaile3 小时前
AI大模型自然语言处理能力案例演示
人工智能·ai·自然语言处理
小白白搭建3 小时前
WordPress AI 原创文章自动生成插件 24小时全自动生成SEO原创文章 | 多语言支持 | 智能配图与排版
人工智能
Jamence3 小时前
多模态大语言模型arxiv论文略读(三十九)
人工智能·语言模型·自然语言处理
ai大模型木子3 小时前
嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
人工智能·自然语言处理·bert·embedding·word2vec·ai大模型·大模型资料