深度学习基础-onnxruntime推理模型

以下是一个完整的示例,展示如何加载 ONNX 模型、获取模型信息并运行推理:

复制代码
import onnxruntime
import numpy as np

# 模型路径
bev_head_onnx_path = "path/to/your/bev_head.onnx"

# 加载模型
session = onnxruntime.InferenceSession(bev_head_onnx_path)

# 获取模型元信息
model_meta = session.get_modelmeta()
print("Model Name:", model_meta.name)
print("Model Version:", model_meta.version)
print("Inputs:", [input.name for input in model_meta.graph_inputs])
print("Outputs:", [output.name for output in model_meta.graph_outputs])

# 准备输入数据
# 假设模型的输入名称为 'volumes',形状为 (1, 3, 224, 224)
volumes = np.random.rand(1, 3, 224, 224).astype(np.float32)

# 运行推理
onnx_results = session.run([], {'volumes': volumes})

# 打印输出结果
print("Output shape:", [result.shape for result in onnx_results])

输出示例

假设模型的输入名称为 'volumes',输出名称为 'output',运行上述代码可能会输出类似以下内容:

复制代码
Model Name: bev_head_model
Model Version: 1.0
Inputs: ['volumes']
Outputs: ['output']
Output shape: [(1, 1000)]

注意事项

  1. 输入名称和形状

    • 输入数据的名称(如 'volumes')和形状必须与 ONNX 模型中定义的输入一致。可以通过 get_modelmeta() 检查输入名称和形状。

    • 如果输入数据的形状不正确,可能会导致运行时错误。

  2. 数据类型

    • 输入数据的类型(如 np.float32)也必须与模型的要求一致。可以通过 model_meta.graph_inputs 检查输入数据类型。
  3. 输出结果

    • session.run() 返回的结果是一个列表,其中每个元素对应一个输出张量。如果模型有多个输出,可以通过指定输出名称列表来选择需要的输出。
  4. 性能优化

    • 如果需要更高的推理性能,可以使用 onnxruntime 的优化选项,例如设置执行提供者(如 CUDAExecutionProvider)或启用图优化。

通过这种方式,你可以方便地加载和运行 ONNX 模型,并获取模型的推理结果。

相关推荐
星月昭铭36 分钟前
Spring AI集成Elasticsearch向量检索时filter过滤失效问题排查与解决方案
人工智能·spring boot·spring·elasticsearch·ai
一点一木1 小时前
🚀 2025 年 07 月 GitHub 十大热门项目排行榜 🔥
前端·人工智能·github
liliangcsdn1 小时前
基于deepseek的事件穿透分析-风险传导图谱
人工智能·prompt
zskj_zhyl2 小时前
让科技之光,温暖银龄岁月——智绅科技“智慧养老进社区”星城国际站温情纪实
大数据·人工智能·科技·生活
阿扬别林2 小时前
用最简单的python语法来利用机器学习算法预测药物分子的xlogp
人工智能
码蜂工社AI智能体2 小时前
手把手教你Coze 开发平台开源本地部署详细教程(常见问题合集篇)
人工智能
CoovallyAIHub2 小时前
无人机图像+深度学习:湖南农大团队实现稻瘟病分级检测84%准确率
深度学习·算法·计算机视觉
TiAmo zhang2 小时前
深度学习与图像处理案例 │ 图像分类(智能垃圾分拣器)
图像处理·深度学习·分类
CodeCraft Studio2 小时前
图像处理控件Aspose.Imaging教程:使用 C# 编程将 CMX 转换为 PNG
图像处理·人工智能·c#·aspose·png·图片格式转换·cmx
闲看云起3 小时前
从矩阵表示到卷积神经网络(CNN)与循环神经网络(RNN)
人工智能·rnn·矩阵·cnn