深度学习基础-onnxruntime推理模型

以下是一个完整的示例,展示如何加载 ONNX 模型、获取模型信息并运行推理:

复制代码
import onnxruntime
import numpy as np

# 模型路径
bev_head_onnx_path = "path/to/your/bev_head.onnx"

# 加载模型
session = onnxruntime.InferenceSession(bev_head_onnx_path)

# 获取模型元信息
model_meta = session.get_modelmeta()
print("Model Name:", model_meta.name)
print("Model Version:", model_meta.version)
print("Inputs:", [input.name for input in model_meta.graph_inputs])
print("Outputs:", [output.name for output in model_meta.graph_outputs])

# 准备输入数据
# 假设模型的输入名称为 'volumes',形状为 (1, 3, 224, 224)
volumes = np.random.rand(1, 3, 224, 224).astype(np.float32)

# 运行推理
onnx_results = session.run([], {'volumes': volumes})

# 打印输出结果
print("Output shape:", [result.shape for result in onnx_results])

输出示例

假设模型的输入名称为 'volumes',输出名称为 'output',运行上述代码可能会输出类似以下内容:

复制代码
Model Name: bev_head_model
Model Version: 1.0
Inputs: ['volumes']
Outputs: ['output']
Output shape: [(1, 1000)]

注意事项

  1. 输入名称和形状

    • 输入数据的名称(如 'volumes')和形状必须与 ONNX 模型中定义的输入一致。可以通过 get_modelmeta() 检查输入名称和形状。

    • 如果输入数据的形状不正确,可能会导致运行时错误。

  2. 数据类型

    • 输入数据的类型(如 np.float32)也必须与模型的要求一致。可以通过 model_meta.graph_inputs 检查输入数据类型。
  3. 输出结果

    • session.run() 返回的结果是一个列表,其中每个元素对应一个输出张量。如果模型有多个输出,可以通过指定输出名称列表来选择需要的输出。
  4. 性能优化

    • 如果需要更高的推理性能,可以使用 onnxruntime 的优化选项,例如设置执行提供者(如 CUDAExecutionProvider)或启用图优化。

通过这种方式,你可以方便地加载和运行 ONNX 模型,并获取模型的推理结果。

相关推荐
编码小哥2 分钟前
OpenCV特征匹配:暴力匹配与FLANN匹配实战
人工智能·opencv·计算机视觉
数字游民95277 分钟前
网站备案全流程回放(腾讯云)
人工智能·git·github·腾讯云·网站备案·waytoopc
飞哥数智坊10 分钟前
3位实战分享、6个案例展示,TRAE Friends@济南第二场圆满完成
人工智能·ai编程·trae
xiaobaishuoAI11 分钟前
全链路性能优化实战指南:从瓶颈定位到极致优化
大数据·人工智能·科技·百度·geo
人工小情绪11 分钟前
深度学习模型部署形式
人工智能·深度学习
AI_567812 分钟前
零基础学Linux:21天从“命令小白”到独立部署服务器
linux·服务器·人工智能·github
乾元14 分钟前
如何把 CCIE / HCIE 的实验案例改造成 AI 驱动的工程项目——从“实验室能力”到“可交付系统”的完整迁移路径
大数据·运维·网络·人工智能·深度学习·安全·机器学习
kisshuan1239615 分钟前
【深度学习】【目标检测】基于Mask R-CNN的鱼类尾巴检测与识别
深度学习·目标检测·r语言
GZKPeng15 分钟前
pytorch +cuda成功安装后, torch.cuda.is_available 是False
人工智能·pytorch·python
QBoson18 分钟前
量子机器学习用于药物发现:系统综述
人工智能·机器学习·量子计算