【sklearn 02】监督学习、非监督下学习、强化学习

监督学习、非监督学习、强化学习

**机器学习通常分为无监督学习、监督学习和强化学习三类。

- 第一类:无监督学习(unsupervised
learning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。

- 第二类:监督学习(supervised
learning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测的结果是离散值时属于分类(classification)问题,当预测的结果是连续值时属于回归(regression)问题。

- 第三类:强化学习(reinforcement
learning),是学习系统从环境行为映射的学习,以使奖励信息号(强化信号)函数值最大。常用于智能控制机器人和决策问题。
**

相关推荐
天空卫士6 分钟前
构筑芯片行业的“安全硅甲”
人工智能·安全·数据安全
jndingxin7 分钟前
OpenCV中适用华为昇腾(Ascend)后端的逐元素操作(Per-element Operations)
人工智能·opencv
jndingxin10 分钟前
OpenCV 中用于支持 华为昇腾(Ascend)AI 芯片后端 的模块CANN
人工智能·opencv
拾忆-eleven17 分钟前
第四节:OpenCV 基础入门-第一个 OpenCV 程序:图像读取与显示
人工智能·opencv·计算机视觉
阿里云云原生34 分钟前
剑指大规模 AI 可观测,阿里云 Prometheus 2.0 应运而生
人工智能·阿里云·prometheus
一点.点36 分钟前
使用零样本LLM在现实世界环境中推广端到端自动驾驶——论文阅读
论文阅读·人工智能·语言模型·自动驾驶
虾球xz39 分钟前
游戏引擎学习第267天:为每个元素添加裁剪矩形
c++·学习·游戏引擎
jndingxin41 分钟前
OpenCV 中用于背景分割的一个类cv::bgsegm::BackgroundSubtractorLSBP
人工智能·opencv·计算机视觉
samroom41 分钟前
Webpack基本用法学习总结
前端·学习·webpack
一点.点42 分钟前
LeapVAD:通过认知感知和 Dual-Process 思维实现自动驾驶飞跃——论文阅读
人工智能·语言模型·自动驾驶