监督学习、非监督学习、强化学习
**机器学习通常分为无监督学习、监督学习和强化学习三类。
- 第一类:无监督学习(unsupervised
learning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。
- 第二类:监督学习(supervised
learning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测的结果是离散值时属于分类(classification)问题,当预测的结果是连续值时属于回归(regression)问题。
- 第三类:强化学习(reinforcement
learning),是学习系统从环境行为映射的学习,以使奖励信息号(强化信号)函数值最大。常用于智能控制机器人和决策问题。 **