【sklearn 02】监督学习、非监督下学习、强化学习

监督学习、非监督学习、强化学习

**机器学习通常分为无监督学习、监督学习和强化学习三类。

- 第一类:无监督学习(unsupervised
learning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。

- 第二类:监督学习(supervised
learning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测的结果是离散值时属于分类(classification)问题,当预测的结果是连续值时属于回归(regression)问题。

- 第三类:强化学习(reinforcement
learning),是学习系统从环境行为映射的学习,以使奖励信息号(强化信号)函数值最大。常用于智能控制机器人和决策问题。
**

相关推荐
晨同学0327几秒前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿11 分钟前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手13 分钟前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志36 分钟前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
大苏打seven41 分钟前
Docker学习笔记:Docker网络
笔记·学习·docker
我就是全世界1 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield1 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
我不是哆啦A梦1 小时前
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
运维·人工智能·python·算法·chatgpt
galaxylove1 小时前
Gartner发布塑造安全运营未来的关键 AI 自动化趋势
人工智能·安全·自动化
强哥之神2 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算