【sklearn 02】监督学习、非监督下学习、强化学习

监督学习、非监督学习、强化学习

**机器学习通常分为无监督学习、监督学习和强化学习三类。

- 第一类:无监督学习(unsupervised
learning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。

- 第二类:监督学习(supervised
learning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测的结果是离散值时属于分类(classification)问题,当预测的结果是连续值时属于回归(regression)问题。

- 第三类:强化学习(reinforcement
learning),是学习系统从环境行为映射的学习,以使奖励信息号(强化信号)函数值最大。常用于智能控制机器人和决策问题。
**

相关推荐
栀子清茶9 分钟前
Towards Universal Soccer Video Understanding——论文学习(足球类)
论文阅读·人工智能·深度学习·学习·算法·计算机视觉·论文笔记
小诸葛IT课堂28 分钟前
PyTorch 生态概览:为什么选择动态计算图框架?
人工智能·pytorch·python
雅菲奥朗40 分钟前
4大观点直面呈现|直播回顾-DeepSeek时代的AI算力管理
人工智能·ai算力·deepseek
F_lander41 分钟前
蓝桥杯学习-08序列二分
学习·职场和发展·蓝桥杯
程序员JerrySUN1 小时前
深入解析 TensorFlow 兼容性问题及构建输出文件结构*
人工智能·tensorflow·neo4j
2401_872487881 小时前
网络安全之前端学习(HTML篇)
学习·html
ruokkk1 小时前
搭建一个声纹识别系统
人工智能
kula7751 小时前
Trae,国产首款AI编程IDE初体验
人工智能
moonless02221 小时前
【AI】MercuryCoder与LLaDA? 自回归模型与扩散模型的碰撞,谁才是未来的LLM答案?
人工智能·llm
吾名招财1 小时前
pytorch快速入门——手写数字分类GPU加速
人工智能·pytorch·分类