输入:0.5元/百万tokens(缓存命中)或2元(未命中) 输出:8元/百万tokens

这句话描述了一种 定价模型,通常用于云计算、API 服务或数据处理服务中,根据资源使用情况(如缓存命中与否)来收费。以下是对这句话的详细解释:


1. 关键术语解释

  • Tokens:在自然语言处理(NLP)或数据处理领域,Token 通常指文本的最小单位(如一个单词或一个字符)。在这里,Tokens 是计费的单位。

  • 缓存命中(Cache Hit):当请求的数据已经在缓存中时,称为缓存命中。缓存命中通常意味着更快的响应速度和更低的资源消耗。

  • 缓存未命中(Cache Miss):当请求的数据不在缓存中时,称为缓存未命中。此时需要从原始数据源获取数据,消耗更多资源。


2. 定价模型解析

  • 输入成本

    • 缓存命中:0.5 元/百万 Tokens。

      • 当数据从缓存中获取时,每处理 100 万个 Tokens 收费 0.5 元。
    • 缓存未命中:2 元/百万 Tokens。

      • 当数据需要从原始数据源获取时,每处理 100 万个 Tokens 收费 2 元。
  • 输出成本:8 元/百万 Tokens。

    • 无论缓存是否命中,每生成或输出 100 万个 Tokens 收费 8 元。

3. 实际应用场景

假设你使用了一个 AI 模型或数据处理服务,该服务根据输入和输出的 Tokens 数量收费:

  1. 输入阶段

    • 如果你输入的数据已经在缓存中(缓存命中),则输入成本为 0.5 元/百万 Tokens。

    • 如果数据不在缓存中(缓存未命中),则输入成本为 2 元/百万 Tokens。

  2. 输出阶段

    • 无论缓存是否命中,输出的 Tokens 都会按照 8 元/百万 Tokens 收费。

4. 示例计算

假设你输入了 500 万个 Tokens,并输出了 300 万个 Tokens:

  • 情况 1:缓存命中

    • 输入成本:0.5 元/百万 Tokens × 5 = 2.5 元。

    • 输出成本:8 元/百万 Tokens × 3 = 24 元。

    • 总成本:2.5 元 + 24 元 = 26.5 元。

  • 情况 2:缓存未命中

    • 输入成本:2 元/百万 Tokens × 5 = 10 元。

    • 输出成本:8 元/百万 Tokens × 3 = 24 元。

    • 总成本:10 元 + 24 元 = 34 元。


5. 总结

这句话的意思是:

  • 输入阶段

    • 如果数据在缓存中,收费较低(0.5 元/百万 Tokens)。

    • 如果数据不在缓存中,收费较高(2 元/百万 Tokens)。

  • 输出阶段

    • 无论缓存是否命中,输出 Tokens 的收费固定为 8 元/百万 Tokens。

这种定价模型鼓励用户优化缓存使用,以降低输入成本,同时输出成本是固定的。

相关推荐
段帅龙呀4 小时前
Redis构建缓存服务器
服务器·redis·缓存
夜斗小神社19 小时前
【黑马点评】(二)缓存
缓存
Hello.Reader1 天前
Redis 延迟监控深度指南
数据库·redis·缓存
Hello.Reader1 天前
Redis 延迟排查与优化全攻略
数据库·redis·缓存
在肯德基吃麻辣烫2 天前
《Redis》缓存与分布式锁
redis·分布式·缓存
先睡2 天前
Redis的缓存击穿和缓存雪崩
redis·spring·缓存
CodeWithMe3 天前
【Note】《深入理解Linux内核》 Chapter 15 :深入理解 Linux 页缓存
linux·spring·缓存
大春儿的试验田3 天前
高并发收藏功能设计:Redis异步同步与定时补偿机制详解
java·数据库·redis·学习·缓存
likeGhee3 天前
python缓存装饰器实现方案
开发语言·python·缓存
C182981825753 天前
OOM电商系统订单缓存泄漏,这是泄漏还是溢出
java·spring·缓存