输入:0.5元/百万tokens(缓存命中)或2元(未命中) 输出:8元/百万tokens

这句话描述了一种 定价模型,通常用于云计算、API 服务或数据处理服务中,根据资源使用情况(如缓存命中与否)来收费。以下是对这句话的详细解释:


1. 关键术语解释

  • Tokens:在自然语言处理(NLP)或数据处理领域,Token 通常指文本的最小单位(如一个单词或一个字符)。在这里,Tokens 是计费的单位。

  • 缓存命中(Cache Hit):当请求的数据已经在缓存中时,称为缓存命中。缓存命中通常意味着更快的响应速度和更低的资源消耗。

  • 缓存未命中(Cache Miss):当请求的数据不在缓存中时,称为缓存未命中。此时需要从原始数据源获取数据,消耗更多资源。


2. 定价模型解析

  • 输入成本

    • 缓存命中:0.5 元/百万 Tokens。

      • 当数据从缓存中获取时,每处理 100 万个 Tokens 收费 0.5 元。
    • 缓存未命中:2 元/百万 Tokens。

      • 当数据需要从原始数据源获取时,每处理 100 万个 Tokens 收费 2 元。
  • 输出成本:8 元/百万 Tokens。

    • 无论缓存是否命中,每生成或输出 100 万个 Tokens 收费 8 元。

3. 实际应用场景

假设你使用了一个 AI 模型或数据处理服务,该服务根据输入和输出的 Tokens 数量收费:

  1. 输入阶段

    • 如果你输入的数据已经在缓存中(缓存命中),则输入成本为 0.5 元/百万 Tokens。

    • 如果数据不在缓存中(缓存未命中),则输入成本为 2 元/百万 Tokens。

  2. 输出阶段

    • 无论缓存是否命中,输出的 Tokens 都会按照 8 元/百万 Tokens 收费。

4. 示例计算

假设你输入了 500 万个 Tokens,并输出了 300 万个 Tokens:

  • 情况 1:缓存命中

    • 输入成本:0.5 元/百万 Tokens × 5 = 2.5 元。

    • 输出成本:8 元/百万 Tokens × 3 = 24 元。

    • 总成本:2.5 元 + 24 元 = 26.5 元。

  • 情况 2:缓存未命中

    • 输入成本:2 元/百万 Tokens × 5 = 10 元。

    • 输出成本:8 元/百万 Tokens × 3 = 24 元。

    • 总成本:10 元 + 24 元 = 34 元。


5. 总结

这句话的意思是:

  • 输入阶段

    • 如果数据在缓存中,收费较低(0.5 元/百万 Tokens)。

    • 如果数据不在缓存中,收费较高(2 元/百万 Tokens)。

  • 输出阶段

    • 无论缓存是否命中,输出 Tokens 的收费固定为 8 元/百万 Tokens。

这种定价模型鼓励用户优化缓存使用,以降低输入成本,同时输出成本是固定的。

相关推荐
猕员桃13 小时前
《高并发系统性能优化三板斧:缓存 + 异步 + 限流》
缓存·性能优化
float_六七15 小时前
Redis:极速缓存与数据结构存储揭秘
数据结构·redis·缓存
blammmp16 小时前
Redis : set集合
数据库·redis·缓存
星叔16 小时前
TC3xx中PFLASH缓存对XCP标定常量的影响
缓存·汽车·xcp
LUCIAZZZ17 小时前
项目拓展-Jol分析本地对象or缓存的内存占用
java·开发语言·jvm·数据库·缓存·springboot
哈喽姥爷18 小时前
苍穹外卖--缓存菜品Spring Cache
java·缓存·spring cache·苍穹外卖·黑马
Gazer_S20 小时前
【HTTP重定向与缓存机制详解】
网络协议·http·缓存
沐土Arvin20 小时前
HTTP 缓存策略:强缓存与协商缓存的深入解析
网络协议·http·缓存
山猪打不过家猪1 天前
(三)总结(缓存/ETag请求头)
缓存·微服务
春生野草2 天前
MyBatis中关于缓存的理解
java·缓存·mybatis