ollama离线部署qwq模型实操指南

引文

随着人工智能技术的飞速发展,大语言模型在各个领域展现出了巨大的潜力。qwq模型作为其中的佼佼者,以其强大的语言理解和生成能力受到了广泛关注。然而,在实际应用中,由于网络环境的限制或对数据隐私的严格要求,离线部署qwq模型成为了许多开发者和企业的迫切需求。ollama作为一种高效的模型部署工具,为离线部署qwq模型提供了一种便捷且高效的解决方案。本文将详细介绍如何使用ollama进行qwq模型的离线部署,包括环境准备、模型文件获取、创建Modelfile、模型创建与运行等关键步骤,并探讨在实际应用中可能遇到的问题及优化策略,旨在为读者提供一份全面、实用的部署指南,助力其在离线环境下充分利用qwq模型的强大功能。

环境准备

默认已安装好ollama,未安装的可以参考该篇文章(ollama本地部署deepseek:7b模型使用ollama实现deepseek-r1:7b的本地部署,包括Linux - 掘金)

模型文件获取

可在魔搭社区进行搜索下载,选择文件名后缀为gguf模型文件

根据实际需要下载对应的量化版本,此处以q8为例

将下载后的模型上传至ollama/models

创建Modefile

在ollama文件下,创建Modelfile文件(命名随意),执行以下操作

js 复制代码
# 创建Modefile
touch Modelfile
# 修改Modelfile
vi Modelfile
# 向Modelfile中写入以下内容
FROM /home/ubuntu/ollama/models/qwq-32b-q8_0.gguf   # 修改为自己模型路径
TEMPLATE """{{- if or .System .Tools }}<|im_start|>system
{{- if .System }}
{{ .System }}
{{- end }}
{{- if .Tools }}

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}
{{- end }}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}"""
PARAMETER repeat_penalty 1
PARAMETER stop <|im_start|>
PARAMETER stop <|im_end|>
PARAMETER temperature 0.6  # 模型创造性,分数越高创造性越强
PARAMETER top_k 40
PARAMETER top_p 0.95

模型创建与运行

创建好Modelfile后,cd到此文件夹下,使用以下命令实现创建

js 复制代码
ollama create <model_name> -f <path_to_Modelfile> # model_name为你所想命名生成后模型的名字
# 例如我想命名为qwq:32b_q8
ollama create qwq: 32b_q8 -f Modelfile

创建成功后,可以使用ollama list进行查看

使用 ollama run ,进行对话

生成速度还是不错的,显存占用30G左右

相关推荐
_一条咸鱼_1 小时前
Python 数据类型之可变与不可变类型详解(十)
人工智能·python·面试
_一条咸鱼_1 小时前
Python 语法入门之基本数据类型(四)
人工智能·深度学习·面试
2201_754918411 小时前
卷积神经网络--手写数字识别
人工智能·神经网络·cnn
_一条咸鱼_1 小时前
Python 用户交互与格式化输出(五)
人工智能·深度学习·面试
_一条咸鱼_1 小时前
Python 流程控制之 for 循环(九)
人工智能·python·面试
_一条咸鱼_1 小时前
Python 语法入门之流程控制 if 判断(七)
人工智能·python·面试
_一条咸鱼_1 小时前
Python 流程控制之 while 循环(八)
人工智能·python·面试
_一条咸鱼_1 小时前
Python 垃圾回收机制 GC 深度解析(三)
人工智能·深度学习·面试
終不似少年遊*2 小时前
国产之光DeepSeek架构理解与应用分析04
人工智能·python·深度学习·算法·大模型·ds
訾博ZiBo2 小时前
AI日报 - 2025年4月23日
人工智能