TensorRT:高性能深度学习推理的利器

引言

在深度学习领域,训练和推理是两个关键环节。训练过程通常需要大量的计算资源和时间来调整模型参数,而推理则是使用训练好的模型对新数据进行预测。随着深度学习模型的不断增大和复杂度的提高,推理的性能成为了一个重要的挑战。NVIDIA 的 TensorRT 就是为了解决这一问题而设计的高性能深度学习推理优化器。

什么是 TensorRT

TensorRT 是 NVIDIA 推出的一个用于高性能深度学习推理的 SDK。它可以对已经训练好的深度学习模型进行优化,从而显著提高推理的速度和效率。TensorRT 支持多种深度学习框架,如 TensorFlow、PyTorch、ONNX 等,这意味着我们可以将使用这些框架训练好的模型轻松地转换为 TensorRT 引擎,以获得更好的推理性能。

TensorRT用途

模型包括训练和推理两个阶段,训练的时候包含了前向传播和反向传播,推理只包含前向传播,所以预测时候的速度更重要。

现在大多数的深度学习网络模型结构复杂并且参数量巨大,需要使用多个高性能的 GPU 分布式训练才能获得全局最优的结果,这使得深度学习方法很难应用中在实际的生产环境中

为了降低生产成本,在实际应用中,模型通常都会部署在嵌入式开发板上,或者使用单个 GPU 甚至是嵌入式平台,其算力相对较低,对于结构复杂且参数量巨大的网络模型较难获取实时的推理速度

模型训练时采用的框架会不同,不同机器的性能会存在差异,导致推理速度变慢,无法满足高实时性。如果在使用深度学习方法时,部署应用的机器的深度学习环境要与网络模型训练时的环境相同,这增加了深度学习方法部署的复杂性。

而 TensorRT 就是推理优化器,把 ONNX 模型转换为 TensorRT 之后,就可以在相关边端部署了。

TensorRT 的优势:

  • 与许多轻量级的深度学习网络模型相比,TensorRT 不仅可以大幅提高网络的推理速度,而且只损失些许的精度。
  • 同时,使用 TensorRT 优化后的网络模型的部署不再需要与训练时相同的环境。
  • 使用 TensorRT 优化之后的网络推理速度有了较大的提高

TensorRT 的工作原理

TensorRT包含两个阶段:编译build和部署deploy。

  • 编译阶段对网络配置进行优化,并生成一个plan文件,用于通过深度神经网络计算前向传递。plan文件是一个优化的目标代码,可以序列化并且可存储在内存和硬盘中。

  • 部署阶段通常采用长时间运行的服务或者用户应用程序的形式。它们接收批量输入数据,通过执行plan文件在输入数据上进行推理,并且返回批量的输出数据(分类、目标检测等)

为了优化你的推理模型,TensorRT将接受你的网络定义,执行优化,包括特定平台优化,并且生成一个推理引擎(inference engine)。这个过程被视作编译阶段(build phase)。编译计算可能耗费相当多的时间,尤其是在嵌入式平台中运行时。因此,一个典型的应用将会构建一个引擎,然后将其序列化为一个plan 文件,以供后续使用。(生成的plan文件并不能够跨平台/TensorRT版本移植)

编译阶段在图层中执行如下优化:

  • 消除输出未被使用的层
  • 消除等价于no-op的运算
  • 卷积层,偏差和ReLu操作的融合
  • 聚合具有足够相似参数和相同目标张量的操作(例如,Googlenet v5 inception 模型的1*1卷积)
  • 通过直接将层输出定向到正确最终目的来合并concatenation 层
相关推荐
一百天成为python专家3 小时前
数据可视化
开发语言·人工智能·python·机器学习·信息可视化·numpy
金井PRATHAMA3 小时前
主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
人工智能·神经网络·自然语言处理
说私域3 小时前
技术赋能与营销创新:开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化路径研究
人工智能·小程序·开源
倒悬于世6 小时前
开源的语音合成大模型-Cosyvoice使用介绍
人工智能·python·语音识别
pk_xz1234566 小时前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建
蓝蜂物联网6 小时前
边缘计算网关赋能智慧农业:物联网边缘计算的创新应用与实践
人工智能·物联网·边缘计算
酌沧7 小时前
AI图像编辑能力评测的8大测评集
人工智能
tanak7 小时前
2025年7月23日 AI 今日头条
人工智能·microsoft
爷_7 小时前
字节跳动震撼开源Coze平台!手把手教你本地搭建AI智能体开发环境
前端·人工智能·后端
格林威8 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现持械检测(C#代码,UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉