Netty进阶

粘包半包

现象分析

粘包

  • 现象
    • 发送 abc def,接收 abcdef
  • 原因
    • 应用层
      • 接收方 ByteBuf 设置太大(Netty 默认 1024)
    • 传输层-网络层
      • 滑动窗口:假设发送方 256 bytes 表示一个完整报文,但由于接收方处理不及时且**窗口大小足够大(大于256 bytes),这 256 bytes 字节就会缓冲在接收方的滑动窗口中,**当滑动窗口中缓冲了多个报文就会粘包
      • Nagle 算法:会造成粘包

半包

  • 现象
    • 发送 abcdef,接收 abc def
  • 原因
    • 应用层
      • 接收方 ByteBuf 小于实际发送数据量
    • 传输层-网络层
      • 滑动窗口:假设接收方的窗口只剩了 128 bytes,发送方的报文大小是 256 bytes,这时接收方窗口中无法容纳发送方的全部报文,发送方只能先发送前 128 bytes,等待 ack 后才能发送剩余部分,这就造成了半包
    • 数据链路层
      • MSS 限制:当发送的数据超过 MSS 限制后,会将数据切分发送,就会造成半包

本质

发生粘包与半包现象的本质是因为 TCP 是流式协议,消息无边界

解决方案

短链接

客户端每次向服务器发送数据以后,就与服务器断开连接,此时的消息边界为连接建立到连接断开 。这时便无需使用滑动窗口等技术来缓冲数据,则不会发生粘包现象。但如果一次性数据发送过多,接收方无法一次性容纳所有数据,还是会发生半包现象,所以短链接无法解决半包现象

客户端代码改进

修改channelActive方法

arduino 复制代码
public void channelActive(ChannelHandlerContext ctx) throws Exception {
    log.debug("sending...");
    ByteBuf buffer = ctx.alloc().buffer(16);
    buffer.writeBytes(new byte[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15});
    ctx.writeAndFlush(buffer);
    // 使用短链接,每次发送完毕后就断开连接
    ctx.channel().close();
}Copy

将发送步骤整体封装为send()方法,调用10次send()方法,模拟发送10次数据

arduino 复制代码
public static void main(String[] args) {
    // 发送10次
    for (int i = 0; i < 10; i++) {
        send();
    }
}Copy

运行结果

less 复制代码
6452 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x3eb6a684, L:/127.0.0.1:8080 - R:/127.0.0.1:65024] ACTIVE

6468 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x3eb6a684, L:/127.0.0.1:8080 - R:/127.0.0.1:65024] READ: 16B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
+--------+-------------------------------------------------+----------------+

6468 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x3eb6a684, L:/127.0.0.1:8080 ! R:/127.0.0.1:65024] INACTIVE

6483 [nioEventLoopGroup-3-2] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x7dcc31ff, L:/127.0.0.1:8080 - R:/127.0.0.1:65057] ACTIVE

6483 [nioEventLoopGroup-3-2] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x7dcc31ff, L:/127.0.0.1:8080 - R:/127.0.0.1:65057] READ: 16B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
+--------+-------------------------------------------------+----------------+

6483 [nioEventLoopGroup-3-2] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x7dcc31ff, L:/127.0.0.1:8080 ! R:/127.0.0.1:65057] INACTIVE

...Copy

客户端先于服务器建立连接,此时控制台打印ACTIVE,之后客户端向服务器发送了16B的数据,发送后断开连接,此时控制台打印INACTIVE,可见未出现粘包现象

定长解码器

客户端于服务器约定一个最大长度,保证客户端每次发送的数据长度都不会大于该长度 。若发送数据长度不足则需要补齐至该长度

服务器接收数据时,将接收到的数据按照约定的最大长度进行拆分 ,即使发送过程中产生了粘包,也可以通过定长解码器将数据正确地进行拆分。服务端需要用到FixedLengthFrameDecoder对数据进行定长解码,具体使用方法如下

scss 复制代码
ch.pipeline().addLast(new FixedLengthFrameDecoder(16));

客户端代码

客户端发送数据的代码如下

ini 复制代码
// 约定最大长度为16
final int maxLength = 16;
// 被发送的数据
char c = 'a';
// 向服务器发送10个报文
for (int i = 0; i < 10; i++) {
    ByteBuf buffer = ctx.alloc().buffer(maxLength);
    // 定长byte数组,未使用部分会以0进行填充
    byte[] bytes = new byte[maxLength];
    // 生成长度为0~15的数据
    for (int j = 0; j < (int)(Math.random()*(maxLength-1)); j++) {
        bytes[j] = (byte) c;
    }
    buffer.writeBytes(bytes);
    c++;
    // 将数据发送给服务器
    ctx.writeAndFlush(buffer);
}

服务器代码

使用FixedLengthFrameDecoder对粘包数据进行拆分,该handler需要添加在LoggingHandler之前,保证数据被打印时已被拆分

scss 复制代码
// 通过定长解码器对粘包数据进行拆分
ch.pipeline().addLast(new FixedLengthFrameDecoder(16));
ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));Copy

运行结果

less 复制代码
8222 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0xbc122d07, L:/127.0.0.1:8080 - R:/127.0.0.1:52954] READ: 16B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 61 61 61 00 00 00 00 00 00 00 00 00 00 00 00 |aaaa............|
+--------+-------------------------------------------------+----------------+

8222 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0xbc122d07, L:/127.0.0.1:8080 - R:/127.0.0.1:52954] READ: 16B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 62 00 00 00 00 00 00 00 00 00 00 00 00 00 |bbb.............|
+--------+-------------------------------------------------+----------------+

8222 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0xbc122d07, L:/127.0.0.1:8080 - R:/127.0.0.1:52954] READ: 16B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 63 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |cc..............|
+--------+-------------------------------------------------+----------------+

...Copy

行解码器

行解码器的是通过分隔符对数据进行拆分来解决粘包半包问题的

可以通过LineBasedFrameDecoder(int maxLength)来拆分以换行符(\n)为分隔符的数据,也可以通过DelimiterBasedFrameDecoder(int maxFrameLength, ByteBuf... delimiters)指定通过什么分隔符来拆分数据(可以传入多个分隔符)

两种解码器都需要传入数据的最大长度 ,若超出最大长度,会抛出TooLongFrameException异常

  • 以换行符 \n 为分隔符

    客户端代码

    ini 复制代码
    // 约定最大长度为 64
    final int maxLength = 64;
    // 被发送的数据
    char c = 'a';
    for (int i = 0; i < 10; i++) {
        ByteBuf buffer = ctx.alloc().buffer(maxLength);
        // 生成长度为0~62的数据
        Random random = new Random();
        StringBuilder sb = new StringBuilder();
        for (int j = 0; j < (int)(random.nextInt(maxLength-2)); j++) {
            sb.append(c);
        }
        // 数据以 \n 结尾
        sb.append("\n");
        buffer.writeBytes(sb.toString().getBytes(StandardCharsets.UTF_8));
        c++;
        // 将数据发送给服务器
        ctx.writeAndFlush(buffer);
    }

    服务器代码

    scss 复制代码
    // 通过行解码器对粘包数据进行拆分,以 \n 为分隔符
    // 需要指定最大长度
    ch.pipeline().addLast(new DelimiterBasedFrameDecoder(64));
    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));

    运行结果

    less 复制代码
    4184 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x9d6ac701, L:/127.0.0.1:8080 - R:/127.0.0.1:58282] READ: 10B
             +-------------------------------------------------+
             |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| 61 61 61 61 61 61 61 61 61 61                   |aaaaaaaaaa      |
    +--------+-------------------------------------------------+----------------+
    
    4184 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x9d6ac701, L:/127.0.0.1:8080 - R:/127.0.0.1:58282] READ: 11B
             +-------------------------------------------------+
             |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| 62 62 62 62 62 62 62 62 62 62 62                |bbbbbbbbbbb     |
    +--------+-------------------------------------------------+----------------+
    
    4184 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x9d6ac701, L:/127.0.0.1:8080 - R:/127.0.0.1:58282] READ: 2B
             +-------------------------------------------------+
             |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| 63 63                                           |cc              |
    +--------+-------------------------------------------------+----------------+
    
    ...Copy
  • 以自定义分隔符 \c 为分隔符

    客户端代码

    less 复制代码
    ...
    
    // 数据以 \c 结尾
    sb.append("\\c");
    buffer.writeBytes(sb.toString().getBytes(StandardCharsets.UTF_8));
    
    ...Copy

    服务器代码

    scss 复制代码
    // 将分隔符放入ByteBuf中
    ByteBuf bufSet = ch.alloc().buffer().writeBytes("\\c".getBytes(StandardCharsets.UTF_8));
    // 通过行解码器对粘包数据进行拆分,以 \c 为分隔符
    ch.pipeline().addLast(new DelimiterBasedFrameDecoder(64, ch.alloc().buffer().writeBytes(bufSet)));
    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));Copy

    运行结果

    less 复制代码
    8246 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x86215ccd, L:/127.0.0.1:8080 - R:/127.0.0.1:65159] READ: 14B
             +-------------------------------------------------+
             |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| 61 61 61 61 61 61 61 61 61 61 61 61 61 61       |aaaaaaaaaaaaaa  |
    +--------+-------------------------------------------------+----------------+
    
    8247 [nioEventLoopGroup-3-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x86215ccd, L:/127.0.0.1:8080 - R:/127.0.0.1:65159] READ: 3B
             +-------------------------------------------------+
             |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| 62 62 62                                        |bbb             |
    +--------+-------------------------------------------------+----------------+
    
    ...Copy

长度字段解码器

在传送数据时可以在数据中添加一个用于表示有用数据长度的字段,在解码时读取出这个用于表明长度的字段,同时读取其他相关参数,即可知道最终需要的数据是什么样子的

LengthFieldBasedFrameDecoder解码器可以提供更为丰富的拆分方法,其构造方法有五个参数

java 复制代码
public LengthFieldBasedFrameDecoder(    int maxFrameLength,    int lengthFieldOffset, int lengthFieldLength,    int lengthAdjustment, int initialBytesToStrip)
  • 参数解析

    • maxFrameLength 数据最大长度
      • 表示数据的最大长度(包括附加信息、长度标识等内容)
    • lengthFieldOffset 数据长度标识的起始偏移量
      • 用于指明数据第几个字节开始是用于标识有用字节长度的,因为前面可能还有其他附加信息
    • lengthFieldLength 数据长度标识所占字节数 (用于指明有用数据的长度)
      • 数据中用于表示有用数据长度的标识所占的字节数
    • lengthAdjustment 长度表示与有用数据的偏移量
      • 用于指明数据长度标识和有用数据之间的距离,因为两者之间还可能有附加信息
    • initialBytesToStrip 数据读取起点
      • 读取起点,不读取 0 ~ initialBytesToStrip 之间的数据
  • 参数图解

    • ![[attachments/20210425200007.png]]
    ini 复制代码
    lengthFieldOffset   = 0
    lengthFieldLength   = 2
    lengthAdjustment    = 0
    initialBytesToStrip = 0 (= do not strip header)
    
    BEFORE DECODE (14 bytes)         AFTER DECODE (14 bytes)
    +--------+----------------+      +--------+----------------+
    | Length | Actual Content |----->| Length | Actual Content |
    | 0x000C | "HELLO, WORLD" |      | 0x000C | "HELLO, WORLD" |
    +--------+----------------+      +--------+----------------+

    从0开始即为长度标识,长度标识长度为2个字节

    0x000C 即为后面 HELLO, WORLD的长度


    ini 复制代码
    lengthFieldOffset   = 0
    lengthFieldLength   = 2
    lengthAdjustment    = 0
    initialBytesToStrip = 2 (= the length of the Length field)
    
    BEFORE DECODE (14 bytes)         AFTER DECODE (12 bytes)
    +--------+----------------+      +----------------+
    | Length | Actual Content |----->| Actual Content |
    | 0x000C | "HELLO, WORLD" |      | "HELLO, WORLD" |
    +--------+----------------+      +----------------+

    从0开始即为长度标识,长度标识长度为2个字节,读取时从第二个字节开始读取(此处即跳过长度标识)

    因为跳过了用于表示长度的2个字节 ,所以此处直接读取HELLO, WORLD


    ini 复制代码
    lengthFieldOffset   = 2 (= the length of Header 1)
    lengthFieldLength   = 3
    lengthAdjustment    = 0
    initialBytesToStrip = 0
    
    BEFORE DECODE (17 bytes)                      AFTER DECODE (17 bytes)
    +----------+----------+----------------+      +----------+----------+----------------+
    | Header 1 |  Length  | Actual Content |----->| Header 1 |  Length  | Actual Content |
    |  0xCAFE  | 0x00000C | "HELLO, WORLD" |      |  0xCAFE  | 0x00000C | "HELLO, WORLD" |
    +----------+----------+----------------+      +----------+----------+----------------+

    长度标识前面还有2个字节的其他内容(0xCAFE),第三个字节开始才是长度标识,长度表示长度为3个字节(0x00000C)

    Header1中有附加信息,读取长度标识时需要跳过这些附加信息来获取长度


    ini 复制代码
    lengthFieldOffset   = 0
    lengthFieldLength   = 3
    lengthAdjustment    = 2 (= the length of Header 1)
    initialBytesToStrip = 0
    
    BEFORE DECODE (17 bytes)                      AFTER DECODE (17 bytes)
    +----------+----------+----------------+      +----------+----------+----------------+
    |  Length  | Header 1 | Actual Content |----->|  Length  | Header 1 | Actual Content |
    | 0x00000C |  0xCAFE  | "HELLO, WORLD" |      | 0x00000C |  0xCAFE  | "HELLO, WORLD" |
    +----------+----------+----------------+      +----------+----------+----------------+

    从0开始即为长度标识,长度标识长度为3个字节,长度标识之后还有2个字节的其他内容(0xCAFE)

    长度标识(0x00000C)表示的是从其后lengthAdjustment(2个字节)开始的数据的长度,即HELLO, WORLD,不包括0xCAFE


    ini 复制代码
    lengthFieldOffset   = 1 (= the length of HDR1)
    lengthFieldLength   = 2
    lengthAdjustment    = 1 (= the length of HDR2)
    initialBytesToStrip = 3 (= the length of HDR1 + LEN)
    
    BEFORE DECODE (16 bytes)                       AFTER DECODE (13 bytes)
    +------+--------+------+----------------+      +------+----------------+
    | HDR1 | Length | HDR2 | Actual Content |----->| HDR2 | Actual Content |
    | 0xCA | 0x000C | 0xFE | "HELLO, WORLD" |      | 0xFE | "HELLO, WORLD" |
    +------+--------+------+----------------+      +------+----------------+

    长度标识前面有1个字节的其他内容,后面也有1个字节的其他内容,读取时从长度标识之后3个字节处开始读取 ,即读取 0xFE HELLO, WORLD


  • 使用

    通过 EmbeddedChannel 对 handler 进行测试

    arduino 复制代码
    public class EncoderStudy {
        public static void main(String[] args) {
            // 模拟服务器
            // 使用EmbeddedChannel测试handler
            EmbeddedChannel channel = new EmbeddedChannel(
                    // 数据最大长度为1KB,长度标识前后各有1个字节的附加信息,长度标识长度为4个字节(int)
                    new LengthFieldBasedFrameDecoder(1024, 1, 4, 1, 0),
                    new LoggingHandler(LogLevel.DEBUG)
            );
    
            // 模拟客户端,写入数据
            ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer();
            send(buffer, "Hello");
            channel.writeInbound(buffer);
            send(buffer, "World");
            channel.writeInbound(buffer);
        }
    
        private static void send(ByteBuf buf, String msg) {
            // 得到数据的长度
            int length = msg.length();
            byte[] bytes = msg.getBytes(StandardCharsets.UTF_8);
            // 将数据信息写入buf
            // 写入长度标识前的其他信息
            buf.writeByte(0xCA);
            // 写入数据长度标识
            buf.writeInt(length);
            // 写入长度标识后的其他信息
            buf.writeByte(0xFE);
            // 写入具体的数据
            buf.writeBytes(bytes);
        }
    }

    运行结果

    less 复制代码
    146  [main] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0xembedded, L:embedded - R:embedded] READ: 11B
             +-------------------------------------------------+
             |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| ca 00 00 00 05 fe 48 65 6c 6c 6f                |......Hello     |
    +--------+-------------------------------------------------+----------------+
    
    146  [main] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0xembedded, L:embedded - R:embedded] READ: 11B
             +-------------------------------------------------+
             |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| ca 00 00 00 05 fe 57 6f 72 6c 64                |......World     |
    +--------+-------------------------------------------------+----------------+

协议设计与解析

协议的作用

TCP/IP 中消息传输基于流的方式,没有边界

协议的目的就是划定消息的边界,制定通信双方要共同遵守的通信规则

Redis协议

如果我们要向Redis服务器发送一条set name Nyima的指令,需要遵守如下协议

swift 复制代码
// 该指令一共有3部分,每条指令之后都要添加回车与换行符
*3\r\n
// 第一个指令的长度是3
$3\r\n
// 第一个指令是set指令
set\r\n
// 下面的指令以此类推
$4\r\n
name\r\n
$5\r\n
Nyima\r\n

客户端代码如下

scss 复制代码
public class RedisClient {
    static final Logger log = LoggerFactory.getLogger(StudyServer.class);
    public static void main(String[] args) {
        NioEventLoopGroup group =  new NioEventLoopGroup();
        try {
            ChannelFuture channelFuture = new Bootstrap()
                    .group(group)
                    .channel(NioSocketChannel.class)
                    .handler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        protected void initChannel(SocketChannel ch) {
                            // 打印日志
                            ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                            ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                                @Override
                                public void channelActive(ChannelHandlerContext ctx) throws Exception {
                                    // 回车与换行符
                                    final byte[] LINE = {'\r','\n'};
                                    // 获得ByteBuf
                                    ByteBuf buffer = ctx.alloc().buffer();
                                    // 连接建立后,向Redis中发送一条指令,注意添加回车与换行
                                    // set name Nyima
                                    buffer.writeBytes("*3".getBytes());
                                    buffer.writeBytes(LINE);
                                    buffer.writeBytes("$3".getBytes());
                                    buffer.writeBytes(LINE);
                                    buffer.writeBytes("set".getBytes());
                                    buffer.writeBytes(LINE);
                                    buffer.writeBytes("$4".getBytes());
                                    buffer.writeBytes(LINE);
                                    buffer.writeBytes("name".getBytes());
                                    buffer.writeBytes(LINE);
                                    buffer.writeBytes("$5".getBytes());
                                    buffer.writeBytes(LINE);
                                    buffer.writeBytes("Nyima".getBytes());
                                    buffer.writeBytes(LINE);
                                    ctx.writeAndFlush(buffer);
                                }

                            });
                        }
                    })
                    .connect(new InetSocketAddress("localhost", 6379));
            channelFuture.sync();
            // 关闭channel
            channelFuture.channel().close().sync();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            // 关闭group
            group.shutdownGracefully();
        }
    }
}

控制台打印结果

bash 复制代码
1600 [nioEventLoopGroup-2-1] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x28c994f1, L:/127.0.0.1:60792 - R:localhost/127.0.0.1:6379] WRITE: 34B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 2a 33 0d 0a 24 33 0d 0a 73 65 74 0d 0a 24 34 0d |*3..$3..set..$4.|
|00000010| 0a 6e 61 6d 65 0d 0a 24 35 0d 0a 4e 79 69 6d 61 |.name..$5..Nyima|
|00000020| 0d 0a                                           |..              |
+--------+-------------------------------------------------+----------------+Copy

Redis中查询执行结果

HTTP协议

HTTP协议在请求行请求头中都有很多的内容,自己实现较为困难,可以使用HttpServerCodec作为服务器端的解码器与编码器,来处理HTTP请求

scala 复制代码
// HttpServerCodec 中既有请求的解码器 HttpRequestDecoder 又有响应的编码器 HttpResponseEncoder
// Codec(CodeCombine) 一般代表该类既作为 编码器 又作为 解码器
public final class HttpServerCodec extends CombinedChannelDuplexHandler<HttpRequestDecoder, HttpResponseEncoder>
        implements HttpServerUpgradeHandler.SourceCodec

服务器代码

scss 复制代码
public class HttpServer {
    static final Logger log = LoggerFactory.getLogger(StudyServer.class);

    public static void main(String[] args) {
        NioEventLoopGroup group = new NioEventLoopGroup();
        new ServerBootstrap()
                .group(group)
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<SocketChannel>() {
                    @Override
                    protected void initChannel(SocketChannel ch) {
                        ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                        // 作为服务器,使用 HttpServerCodec 作为编码器与解码器
                        ch.pipeline().addLast(new HttpServerCodec());
                        // 服务器只处理HTTPRequest
                        ch.pipeline().addLast(new SimpleChannelInboundHandler<HttpRequest>() {
                            @Override
                            protected void channelRead0(ChannelHandlerContext ctx, HttpRequest msg) {
                                // 获得请求uri
                                log.debug(msg.uri());

                                // 获得完整响应,设置版本号与状态码
                                DefaultFullHttpResponse response = new DefaultFullHttpResponse(msg.protocolVersion(), HttpResponseStatus.OK);
                                // 设置响应内容
                                byte[] bytes = "<h1>Hello, World!</h1>".getBytes(StandardCharsets.UTF_8);
                                // 设置响应体长度,避免浏览器一直接收响应内容
                                response.headers().setInt(CONTENT_LENGTH, bytes.length);
                                // 设置响应体
                                response.content().writeBytes(bytes);

                                // 写回响应
                                ctx.writeAndFlush(response);
                            }
                        });
                    }
                })
                .bind(8080);
    }
}

服务器负责处理请求并响应浏览器。所以只需要处理HTTP请求即可

scss 复制代码
// 服务器只处理HTTPRequest
ch.pipeline().addLast(new SimpleChannelInboundHandler<HttpRequest>()Copy

获得请求后,需要返回响应给浏览器。需要创建响应对象DefaultFullHttpResponse,设置HTTP版本号及状态码,为避免浏览器获得响应后,因为获得CONTENT_LENGTH而一直空转,需要添加CONTENT_LENGTH字段,表明响应体中数据的具体长度

scss 复制代码
// 获得完整响应,设置版本号与状态码
DefaultFullHttpResponse response = new DefaultFullHttpResponse(msg.protocolVersion(), HttpResponseStatus.OK);
// 设置响应内容
byte[] bytes = "<h1>Hello, World!</h1>".getBytes(StandardCharsets.UTF_8);
// 设置响应体长度,避免浏览器一直接收响应内容
response.headers().setInt(CONTENT_LENGTH, bytes.length);
// 设置响应体
response.content().writeBytes(bytes);Copy

运行结果

浏览器

控制台

less 复制代码
// 请求内容
1714 [nioEventLoopGroup-2-2] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x72630ef7, L:/0:0:0:0:0:0:0:1:8080 - R:/0:0:0:0:0:0:0:1:55503] READ: 688B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 47 45 54 20 2f 66 61 76 69 63 6f 6e 2e 69 63 6f |GET /favicon.ico|
|00000010| 20 48 54 54 50 2f 31 2e 31 0d 0a 48 6f 73 74 3a | HTTP/1.1..Host:|
|00000020| 20 6c 6f 63 61 6c 68 6f 73 74 3a 38 30 38 30 0d | localhost:8080.|
|00000030| 0a 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 6b 65 65 |.Connection: kee|
|00000040| 70 2d 61 6c 69 76 65 0d 0a 50 72 61 67 6d 61 3a |p-alive..Pragma:|
....

// 响应内容
1716 [nioEventLoopGroup-2-2] DEBUG io.netty.handler.logging.LoggingHandler  - [id: 0x72630ef7, L:/0:0:0:0:0:0:0:1:8080 - R:/0:0:0:0:0:0:0:1:55503] WRITE: 61B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
|00000010| 0a 43 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a |.Content-Length:|
|00000020| 20 32 32 0d 0a 0d 0a 3c 68 31 3e 48 65 6c 6c 6f | 22....<h1>Hello|
|00000030| 2c 20 57 6f 72 6c 64 21 3c 2f 68 31 3e          |, World!</h1>   |
+--------+-------------------------------------------------+----------------+Copy

自定义协议

组成要素

  • 魔数:用来在第一时间判定接收的数据是否为无效数据包
  • 版本号:可以支持协议的升级
  • 序列化算法 :消息正文到底采用哪种序列化反序列化方式
    • 如:json、protobuf、hessian、jdk
  • 指令类型:是登录、注册、单聊、群聊... 跟业务相关
  • 请求序号:为了双工通信,提供异步能力
  • 正文长度
  • 消息正文

编码器与解码器

scss 复制代码
public class MessageCodec extends ByteToMessageCodec<Message> {

    @Override
    protected void encode(ChannelHandlerContext ctx, Message msg, ByteBuf out) throws Exception {
        // 设置魔数 4个字节
        out.writeBytes(new byte[]{'N','Y','I','M'});
        // 设置版本号 1个字节
        out.writeByte(1);
        // 设置序列化方式 1个字节
        out.writeByte(1);
        // 设置指令类型 1个字节
        out.writeByte(msg.getMessageType());
        // 设置请求序号 4个字节
        out.writeInt(msg.getSequenceId());
        // 为了补齐为16个字节,填充1个字节的数据
        out.writeByte(0xff);

        // 获得序列化后的msg
        ByteArrayOutputStream bos = new ByteArrayOutputStream();
        ObjectOutputStream oos = new ObjectOutputStream(bos);
        oos.writeObject(msg);
        byte[] bytes = bos.toByteArray();

        // 获得并设置正文长度 长度用4个字节标识
        out.writeInt(bytes.length);
        // 设置消息正文
        out.writeBytes(bytes);
    }

    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
        // 获取魔数
        int magic = in.readInt();
        // 获取版本号
        byte version = in.readByte();
        // 获得序列化方式
        byte seqType = in.readByte();
        // 获得指令类型
        byte messageType = in.readByte();
        // 获得请求序号
        int sequenceId = in.readInt();
        // 移除补齐字节
        in.readByte();
        // 获得正文长度
        int length = in.readInt();
        // 获得正文
        byte[] bytes = new byte[length];
        in.readBytes(bytes, 0, length);
        ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bytes));
        Message message = (Message) ois.readObject();
		// 将信息放入List中,传递给下一个handler
        out.add(message);

        // 打印获得的信息正文
        System.out.println("===========魔数===========");
        System.out.println(magic);
        System.out.println("===========版本号===========");
        System.out.println(version);
        System.out.println("===========序列化方法===========");
        System.out.println(seqType);
        System.out.println("===========指令类型===========");
        System.out.println(messageType);
        System.out.println("===========请求序号===========");
        System.out.println(sequenceId);
        System.out.println("===========正文长度===========");
        System.out.println(length);
        System.out.println("===========正文===========");
        System.out.println(message);
    }
}
  • 编码器与解码器方法源于父类ByteToMessageCodec ,通过该类可以自定义编码器与解码器,泛型类型为被编码与被解码的类。此处使用了自定义类Message,代表消息

    scala 复制代码
    public class MessageCodec extends ByteToMessageCodec<Message>
  • 编码器负责将附加信息与正文信息写入到ByteBuf中 ,其中附加信息总字节数最好为2n,不足需要补齐 。正文内容如果为对象,需要通过序列化将其放入到ByteBuf中

  • 解码器负责将ByteBuf中的信息取出,并放入List中,该List用于将信息传递给下一个handler

编写测试类

java 复制代码
public class TestCodec {
    static final org.slf4j.Logger log = LoggerFactory.getLogger(StudyServer.class);
    public static void main(String[] args) throws Exception {
        EmbeddedChannel channel = new EmbeddedChannel();
        // 添加解码器,避免粘包半包问题
        channel.pipeline().addLast(new LengthFieldBasedFrameDecoder(1024, 12, 4, 0, 0));
        channel.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
        channel.pipeline().addLast(new MessageCodec());
        LoginRequestMessage user = new LoginRequestMessage("Nyima", "123");

        // 测试编码与解码
        ByteBuf byteBuf = ByteBufAllocator.DEFAULT.buffer();
        new MessageCodec().encode(null, user, byteBuf);
        channel.writeInbound(byteBuf);
    }
}
  • 测试类中用到了LengthFieldBasedFrameDecoder,避免粘包半包问题
  • 通过MessageCodec的encode方法将附加信息与正文写入到ByteBuf中,通过channel执行入站操作。入站时会调用decode方法进行解码

运行结果

@Sharable注解

为了提高handler的复用率,可以将handler创建为handler对象,然后在不同的channel中使用该handler对象进行处理操作

scss 复制代码
LoggingHandler loggingHandler = new LoggingHandler(LogLevel.DEBUG);
// 不同的channel中使用同一个handler对象,提高复用率
channel1.pipeline().addLast(loggingHandler);
channel2.pipeline().addLast(loggingHandler);

但是并不是所有的handler都能通过这种方法来提高复用率的 ,例如LengthFieldBasedFrameDecoder。如果多个channel中使用同一个LengthFieldBasedFrameDecoder对象,则可能发生如下问题

  • channel1中收到了一个半包,LengthFieldBasedFrameDecoder发现不是一条完整的数据,则没有继续向下传播
  • 此时channel2中也收到了一个半包,因为两个channel使用了同一个LengthFieldBasedFrameDecoder,存入其中的数据刚好拼凑成了一个完整的数据包 。LengthFieldBasedFrameDecoder让该数据包继续向下传播,最终引发错误

为了提高handler的复用率,同时又避免出现一些并发问题,Netty中原生的handler中用@Sharable注解来标明,该handler能否在多个channel中共享。

只有带有该注解,才能通过对象的方式被共享,否则无法被共享

自定义编解码器能否使用@Sharable注解

这需要根据自定义的handler的处理逻辑进行分析

我们的MessageCodec本身接收的是LengthFieldBasedFrameDecoder处理之后的数据,那么数据肯定是完整的,按分析来说是可以添加@Sharable注解的

但是实际情况我们并不能 添加该注解,会抛出异常信息ChannelHandler cn.nyimac.study.day8.protocol.MessageCodec is not allowed to be shared

  • 因为MessageCodec继承自ByteToMessageCodec,ByteToMessageCodec类的注解如下

    这就意味着ByteToMessageCodec不能被多个channel所共享的

    • 原因:因为该类的目标是:将ByteBuf转化为Message,意味着传进该handler的数据还未被处理过 。所以传过来的ByteBuf可能并不是完整的数据,如果共享则会出现问题

如果想要共享,需要怎么办呢?

继承MessageToMessageDecoder 即可。该类的目标是:将已经被处理的完整数据再次被处理。传过来的Message如果是被处理过的完整数据,那么被共享也就不会出现问题了,也就可以使用@Sharable注解了。实现方式与ByteToMessageCodec类似

scala 复制代码
@ChannelHandler.Sharable
public class MessageSharableCodec extends MessageToMessageCodec<ByteBuf, Message> {
    @Override
    protected void encode(ChannelHandlerContext ctx, Message msg, List<Object> out) throws Exception {
        ...
    }

    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf msg, List<Object> out) throws Exception {
		...
    }
}

参数调优

CONNECT_TIMEOUT_MILLIS

  • 属于 SocketChannal 的参数
  • 用在客户端建立连接时,如果在指定毫秒内无法连接,会抛出 timeout 异常
  • 注意:Netty 中不要用成了SO_TIMEOUT 主要用在阻塞 IO,而 Netty 是非阻塞 IO

使用

scss 复制代码
public class TestParam {
    public static void main(String[] args) {
        // SocketChannel 5s内未建立连接就抛出异常
        new Bootstrap().option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000);

        // ServerSocketChannel 5s内未建立连接就抛出异常
        new ServerBootstrap().option(ChannelOption.CONNECT_TIMEOUT_MILLIS,5000);
        // SocketChannel 5s内未建立连接就抛出异常
        new ServerBootstrap().childOption(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000);
    }
}Copy
  • 客户端通过 Bootstrap.option 函数来配置参数,配置参数作用于 SocketChannel
  • 服务器通过 ServerBootstrap来配置参数,但是对于不同的 Channel 需要选择不同的方法
    • 通过 option 来配置 ServerSocketChannel 上的参数
    • 通过 childOption 来配置 SocketChannel 上的参数

源码分析

客户端中连接服务器的线程是 NIO 线程,抛出异常的是主线程。这是如何做到超时判断以及线程通信的呢?

AbstractNioChannel.AbstractNioUnsafe.connect方法中

java 复制代码
public final void connect(                final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) {

    ...

    // Schedule connect timeout.
    // 设置超时时间,通过option方法传入的CONNECT_TIMEOUT_MILLIS参数进行设置
    int connectTimeoutMillis = config().getConnectTimeoutMillis();
    // 如果超时时间大于0
    if (connectTimeoutMillis > 0) {
        // 创建一个定时任务,延时connectTimeoutMillis(设置的超时时间时间)后执行
        // schedule(Runnable command, long delay, TimeUnit unit)
        connectTimeoutFuture = eventLoop().schedule(new Runnable() {
            @Override
            public void run() {
                // 判断是否建立连接,Promise进行NIO线程与主线程之间的通信
                // 如果超时,则通过tryFailure方法将异常放入Promise中
                // 在主线程中抛出
                ChannelPromise connectPromise = AbstractNioChannel.this.connectPromise;
                ConnectTimeoutException cause = new ConnectTimeoutException("connection timed out: " + remoteAddress);
                if (connectPromise != null && connectPromise.tryFailure(cause)) {
                    close(voidPromise());
                }
            }
        }, connectTimeoutMillis, TimeUnit.MILLISECONDS);
    }

   	...

}Copy

超时的判断主要是通过 Eventloop 的 schedule 方法和 Promise 共同实现的

  • schedule 设置了一个定时任务,延迟connectTimeoutMillis秒后执行该方法
  • 如果指定时间内没有建立连接,则会执行其中的任务
    • 任务负责创建 ConnectTimeoutException 异常,并将异常通过 Pormise 传给主线程并抛出

SO_BACKLOG

该参数是 ServerSocketChannel 的参数

三次握手与连接队列

第一次握手时,因为客户端与服务器之间的连接还未完全建立,连接会被放入半连接队列

当完成三次握手以后,连接会被放入全连接队列中

服务器处理Accept事件是在TCP三次握手,也就是建立连接之后。服务器会从全连接队列中获取连接并进行处理

在 linux 2.2 之前,backlog 大小包括了两个队列的大小,在 linux 2.2 之后,分别用下面两个参数来控制

  • 半连接队列 - sync queue
    • 大小通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 指定,在 syncookies 启用的情况下,逻辑上没有最大值限制,这个设置便被忽略
  • 全连接队列 - accept queue
    • 其大小通过 /proc/sys/net/core/somaxconn 指定,在使用 listen 函数时,内核会根据传入的 backlog 参数与系统参数,取二者的较小值
    • 如果 accpet queue 队列满了,server 将发送一个拒绝连接的错误信息到 client

作用

在Netty中,SO_BACKLOG主要用于设置全连接队列的大小。当处理Accept的速率小于连接建立的速率时,全连接队列中堆积的连接数大于SO_BACKLOG设置的值是,便会抛出异常

设置方式如下

scss 复制代码
// 设置全连接队列,大小为2
new ServerBootstrap().option(ChannelOption.SO_BACKLOG, 2);

默认值

backlog参数在NioSocketChannel.doBind方法被使用

scss 复制代码
@Override
protected void doBind(SocketAddress localAddress) throws Exception {
    if (PlatformDependent.javaVersion() >= 7) {
        javaChannel().bind(localAddress, config.getBacklog());
    } else {
        javaChannel().socket().bind(localAddress, config.getBacklog());
    }
}

其中backlog被保存在了DefaultServerSocketChannelConfig配置类中

arduino 复制代码
private volatile int backlog = NetUtil.SOMAXCONN;

具体的赋值操作如下

java 复制代码
SOMAXCONN = AccessController.doPrivileged(new PrivilegedAction<Integer>() {
    @Override
    public Integer run() {
        // Determine the default somaxconn (server socket backlog) value of the platform.
        // The known defaults:
        // - Windows NT Server 4.0+: 200
        // - Linux and Mac OS X: 128
        int somaxconn = PlatformDependent.isWindows() ? 200 : 128;
        File file = new File("/proc/sys/net/core/somaxconn");
        BufferedReader in = null;
        try {
            // file.exists() may throw a SecurityException if a SecurityManager is used, so execute it in the
            // try / catch block.
            // See https://github.com/netty/netty/issues/4936
            if (file.exists()) {
                in = new BufferedReader(new FileReader(file));
                // 将somaxconn设置为Linux配置文件中设置的值
                somaxconn = Integer.parseInt(in.readLine());
                if (logger.isDebugEnabled()) {
                    logger.debug("{}: {}", file, somaxconn);
                }
            } else {
                ...
            }
            ...
        }
        // 返回backlog的值
        return somaxconn;
    }
}
  • backlog的值会根据操作系统的不同,来选择不同的默认值
    • Windows 200
    • Linux/Mac OS 128
  • 如果配置文件/proc/sys/net/core/somaxconn存在,会读取配置文件中的值,并将backlog的值设置为配置文件中指定的

TCP_NODELAY

  • 属于 SocketChannal 参数
  • 因为 Nagle 算法,数据包会堆积到一定的数量后一起发送,这就可能导致数据的发送存在一定的延时
  • 该参数默认为false,如果不希望的发送被延时,则需要将该值设置为true

SO_SNDBUF & SO_RCVBUF

  • SO_SNDBUF 属于 SocketChannal 参数
  • SO_RCVBUF 既可用于 SocketChannal 参数,也可以用于 ServerSocketChannal 参数(建议设置到 ServerSocketChannal 上)
  • 该参数用于指定接收方与发送方的滑动窗口大小

ALLOCATOR

  • 属于 SocketChannal 参数
  • 用来配置 ByteBuf 是池化还是非池化,是直接内存还是堆内存

使用

scss 复制代码
// 选择ALLOCATOR参数,设置SocketChannel中分配的ByteBuf类型
// 第二个参数需要传入一个ByteBufAllocator,用于指定生成的 ByteBuf 的类型
new ServerBootstrap().childOption(ChannelOption.ALLOCATOR, new PooledByteBufAllocator());

ByteBufAllocator类型

  • 池化并使用直接内存

    arduino 复制代码
    // true表示使用直接内存
    new PooledByteBufAllocator(true);C
  • 池化并使用堆内存

    arduino 复制代码
    // false表示使用堆内存
    new PooledByteBufAllocator(false);
  • 非池化并使用直接内存

    arduino 复制代码
    // ture表示使用直接内存
    new UnpooledByteBufAllocator(true);
  • 非池化并使用堆内存

    arduino 复制代码
    // false表示使用堆内存
    new UnpooledByteBufAllocator(false);

RCVBUF_ALLOCATOR

  • 属于 SocketChannal 参数
  • 控制 Netty 接收缓冲区大小
  • 负责入站数据的分配,决定入站缓冲区的大小(并可动态调整),统一采用 direct 直接内存,具体池化还是非池化由 allocator 决定

源码分析

登录 | ProcessOn

相关推荐
追逐时光者14 分钟前
一款 .NET 开源、功能强大的远程连接管理工具,支持 RDP、VNC、SSH 等多种主流协议!
后端·.net
shan~~22 分钟前
springboot完成复制一个word内容包括格式到另外一个word
spring boot·后端·word
京东零售技术2 小时前
在京东做技术是种什么体验?| 13位零售人告诉你答案
前端·后端·面试
bobz9652 小时前
strongswan ipsec 支持多个 子网 cidr
后端
不修×蝙蝠2 小时前
SpringBoot 第二课(Ⅰ) 整合springmvc(详解)
java·spring boot·后端·spring·整合springmvc
uhakadotcom2 小时前
Prompt Flow 入门:简化 AI 应用开发流程
后端·面试·github
uhakadotcom2 小时前
ONNX Runtime入门:高效深度学习推理框架
后端·面试·github
uhakadotcom3 小时前
PyTorch FSDP:大规模深度学习模型的数据并行策略
后端·面试·github
程序员阿明3 小时前
spring boot maven一栏引入本地包
spring boot·后端·maven
uhakadotcom3 小时前
Foreign Function Interface (FFI)入门:跨语言调用技术
后端·面试·github