llama源码学习·model.py[3]ROPE旋转位置编码(3)源码中的广播机制

一.源码注释

python 复制代码
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    '''
       这个函数的目的是为了确保freqs_cis可以根据广播规则与x进行元素级别的运算,特别是在x的维度数量大于2时。
       '''
    # 获取x的维度数量
    ndim = x.ndim
    
    # 确保x至少有两个维度
    assert ndim > 1
    
    # freqs_cis的形状与x的第二和最后一个维度相匹配
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    
    # 遍历x的每个维度,并为第二和最后一个维度保留其原始大小,而为所有其他维度赋值1。
    # 这是为了确保广播时,除了这两个特定维度外,其他所有维度都能自动扩展。
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    
    # 使用view函数来重塑freqs_cis的形状以匹配新的形状
    return freqs_cis.view(*shape)

二、举例说明

python 复制代码
freqs_cis = torch.randn(3,4)
print(freqs_cis.shape)

out: torch.Size([3, 4])

python 复制代码
x = torch.randn(2, 3, 4)
print(x.shape)

out: torch.Size([2, 3, 4])

python 复制代码
# 调用广播函数
reshaped_freqs_cis = reshape_for_broadcast(freqs_cis, x)
print(reshaped_freqs_cis.shape)

out: torch.Size([1, 3, 4])

python 复制代码
# 求和
s = reshaped_freqs_cis + x
print(s.shape)

out: torch.Size([2, 3, 4])

相关推荐
共绩算力1 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
yanzhilv1 天前
Ollama + Open WebUI
llama
喜欢吃豆3 天前
掌握本地化大语言模型部署:llama.cpp 工作流与 GGUF 转换内核全面技术指南
人工智能·语言模型·架构·大模型·llama·llama.cpp·gguf
illuspas5 天前
Ubuntu 24.04下编译支持ROCm加速的llama.cpp
linux·ubuntu·llama
缘友一世7 天前
LLama3架构原理浅浅学学
人工智能·自然语言处理·nlp·transformer·llama
我们没有完整的家8 天前
批量吞吐量实测:Llama-2-7b 昇腾 NPU 六大场景数据报告
llama
asfdsfgas8 天前
从加载到推理:Llama-2-7b 昇腾 NPU 全流程性能基准
人工智能·llama
asdfsdgss8 天前
FP16 vs INT8:Llama-2-7b 昇腾 NPU 精度性能基准报告
llama
猿代码_xiao8 天前
大模型微调完整步骤( LLama-Factory)
人工智能·深度学习·自然语言处理·chatgpt·llama·集成学习
wei_shuo11 天前
Llama-2-7b 昇腾 NPU 测评总结:核心性能数据、场景适配建议与硬件选型参考
大模型·llama·昇腾