llama源码学习·model.py[3]ROPE旋转位置编码(3)源码中的广播机制

一.源码注释

python 复制代码
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    '''
       这个函数的目的是为了确保freqs_cis可以根据广播规则与x进行元素级别的运算,特别是在x的维度数量大于2时。
       '''
    # 获取x的维度数量
    ndim = x.ndim
    
    # 确保x至少有两个维度
    assert ndim > 1
    
    # freqs_cis的形状与x的第二和最后一个维度相匹配
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    
    # 遍历x的每个维度,并为第二和最后一个维度保留其原始大小,而为所有其他维度赋值1。
    # 这是为了确保广播时,除了这两个特定维度外,其他所有维度都能自动扩展。
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    
    # 使用view函数来重塑freqs_cis的形状以匹配新的形状
    return freqs_cis.view(*shape)

二、举例说明

python 复制代码
freqs_cis = torch.randn(3,4)
print(freqs_cis.shape)

out: torch.Size([3, 4])

python 复制代码
x = torch.randn(2, 3, 4)
print(x.shape)

out: torch.Size([2, 3, 4])

python 复制代码
# 调用广播函数
reshaped_freqs_cis = reshape_for_broadcast(freqs_cis, x)
print(reshaped_freqs_cis.shape)

out: torch.Size([1, 3, 4])

python 复制代码
# 求和
s = reshaped_freqs_cis + x
print(s.shape)

out: torch.Size([2, 3, 4])

相关推荐
l1t1 天前
DeepSeek总结的llama.cpp使用说明
llama
爱跑步的程序员~4 天前
SpringBoot集成SpringAI与Ollama本地大模型
java·后端·spring·ai·llama·springai
向量引擎小橙6 天前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
正宗咸豆花6 天前
开源大模型涨价策略分析:Llama 3.5 与 GLM-5 的商业化博弈
开源·llama
qq_214803297 天前
使用 LLaMA-Factory 微调 Qwen2.5 模型,并转换为 GGUF 格式部署
llama
yyoc9710 天前
Mac基于LLaMA Factory微调模型导入Ollama踩坑记录
大模型·微调·llama·ollama
zhangfeng113310 天前
大语言模型调试框架 Hugging Face vs LLaMA-Factory详细对比
人工智能·语言模型·llama
zhangfeng113310 天前
大语言模型 llama-factory 通常不推荐只用 LoRA 做新词库预热 embedding
深度学习·语言模型·llama
木卫二号Coding11 天前
第八十篇-E5-2680V4+V100-32G+llama-cpp运行+Qwen3-Next-80B-UD-Q2_K_XL.GGUF
llama
小明_GLC12 天前
大模型微调 PEFT vs LLaMA-Factory
人工智能·llama·peft·大模型微调·方法对比