llama源码学习·model.py[3]ROPE旋转位置编码(3)源码中的广播机制

一.源码注释

python 复制代码
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    '''
       这个函数的目的是为了确保freqs_cis可以根据广播规则与x进行元素级别的运算,特别是在x的维度数量大于2时。
       '''
    # 获取x的维度数量
    ndim = x.ndim
    
    # 确保x至少有两个维度
    assert ndim > 1
    
    # freqs_cis的形状与x的第二和最后一个维度相匹配
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    
    # 遍历x的每个维度,并为第二和最后一个维度保留其原始大小,而为所有其他维度赋值1。
    # 这是为了确保广播时,除了这两个特定维度外,其他所有维度都能自动扩展。
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    
    # 使用view函数来重塑freqs_cis的形状以匹配新的形状
    return freqs_cis.view(*shape)

二、举例说明

python 复制代码
freqs_cis = torch.randn(3,4)
print(freqs_cis.shape)

out: torch.Size([3, 4])

python 复制代码
x = torch.randn(2, 3, 4)
print(x.shape)

out: torch.Size([2, 3, 4])

python 复制代码
# 调用广播函数
reshaped_freqs_cis = reshape_for_broadcast(freqs_cis, x)
print(reshaped_freqs_cis.shape)

out: torch.Size([1, 3, 4])

python 复制代码
# 求和
s = reshaped_freqs_cis + x
print(s.shape)

out: torch.Size([2, 3, 4])

相关推荐
m0_603888714 天前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
三千院本院8 天前
LlaMA_Factory实战微调VL大模型
llama
爱分享的飘哥13 天前
第四十六章:AI的“瞬时记忆”与“高效聚焦”:llama.cpp的KV Cache与Attention机制
llama·llama.cpp·kv cache·attention优化·llm cpu推理·量化attention·gguf推理
psyq14 天前
LLaMA Factory 角色扮演模型微调实践记录
人工智能·llama
liliangcsdn22 天前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama
茫茫人海一粒沙22 天前
使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
llama
liliangcsdn24 天前
mac llama_index agent算术式子计算示例
人工智能·python·macos·llama
许愿与你永世安宁25 天前
RAG(检索增强生成)里的文档管理
数据库·人工智能·gpt·oracle·llama·rag
许愿与你永世安宁1 个月前
基于Llama的RAG 3种模型配置方法
人工智能·python·自然语言处理·json·github·llama·faiss
至善迎风1 个月前
本地部署 Kimi K2 全指南(llama.cpp、vLLM、Docker 三法)
docker·容器·llama·kimi