llama源码学习·model.py[3]ROPE旋转位置编码(3)源码中的广播机制

一.源码注释

python 复制代码
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    '''
       这个函数的目的是为了确保freqs_cis可以根据广播规则与x进行元素级别的运算,特别是在x的维度数量大于2时。
       '''
    # 获取x的维度数量
    ndim = x.ndim
    
    # 确保x至少有两个维度
    assert ndim > 1
    
    # freqs_cis的形状与x的第二和最后一个维度相匹配
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    
    # 遍历x的每个维度,并为第二和最后一个维度保留其原始大小,而为所有其他维度赋值1。
    # 这是为了确保广播时,除了这两个特定维度外,其他所有维度都能自动扩展。
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    
    # 使用view函数来重塑freqs_cis的形状以匹配新的形状
    return freqs_cis.view(*shape)

二、举例说明

python 复制代码
freqs_cis = torch.randn(3,4)
print(freqs_cis.shape)

out: torch.Size([3, 4])

python 复制代码
x = torch.randn(2, 3, 4)
print(x.shape)

out: torch.Size([2, 3, 4])

python 复制代码
# 调用广播函数
reshaped_freqs_cis = reshape_for_broadcast(freqs_cis, x)
print(reshaped_freqs_cis.shape)

out: torch.Size([1, 3, 4])

python 复制代码
# 求和
s = reshaped_freqs_cis + x
print(s.shape)

out: torch.Size([2, 3, 4])

相关推荐
Android小码家14 小时前
llama.cpp+Android应用定制
android·llama
Android小码家14 小时前
WSL+llama+CPU本地模型部署
llama·wsl·模型
沛沛老爹15 小时前
Web开发者5分钟上手:Agent Skills环境搭建与基础使用实战
java·人工智能·llm·llama·rag·agent skills
星辰引路-Lefan21 小时前
在浏览器中运行大模型:基于 WebGPU 的本地 LLM 应用深度解析
ai·ai编程·llama·gpu算力
natide1 天前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
*星星之火*2 天前
【大模型进阶】视频课程2 LORA微调原理深度解析+LLaMA Factory实操指南:小白也能玩转大模型定制
lora·大模型·微调·llama·llama factory
natide2 天前
Llama2 API部署错误调试
fastapi·llama
沛沛老爹3 天前
用 Web 开发思维理解 Agent 的三大支柱——Tools + Memory + LLM
java·人工智能·llm·llama·rag
沛沛老爹3 天前
Web开发者深度解析Function Calling:Fc全链路机制与实战原理解析
java·人工智能·llm·llama·rag·web转型
木枷5 天前
多GPU和单GPU运行llama的时间差
人工智能·llama