【AI】10卡的GPU服务器,Docker 配置 docker-compose.yml 限制指定使用最后两块GPU 序号8,9

GPU状态

复制代码
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:0C:00.0 Off |                  Off |
| 30%   26C    P8             18W /  450W |   23393MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:25:00.0 Off |                  Off |
| 30%   27C    P8             28W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off |   00000000:32:00.0 Off |                  Off |
| 30%   27C    P8              6W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off |   00000000:45:00.0 Off |                  Off |
| 30%   27C    P8             18W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA GeForce RTX 4090        Off |   00000000:58:00.0 Off |                  Off |
| 30%   28C    P8             24W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA GeForce RTX 4090        Off |   00000000:84:00.0 Off |                  Off |
| 30%   27C    P8             21W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA GeForce RTX 4090        Off |   00000000:98:00.0 Off |                  Off |
| 30%   26C    P8             16W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA GeForce RTX 4090        Off |   00000000:AC:00.0 Off |                  Off |
| 30%   28C    P8             27W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   8  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   27C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   9  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

配置docker-compose.yml

services:

ragflow:

environment:

  • NVIDIA_VISIBLE_DEVICES=0,1 # 内部序号还是0,1 不是外部的8,9

deploy:

resources:

reservations:

devices:

  • driver: nvidia

device_ids: ["8","9"]

capabilities: [gpu]

注意:

  1. 内部环境变量仍然是0,1

  2. device_ids参数是字符串数组,不是整形数组

效果:

docker exec -it ragflow-server nvidia-smi

Thu Mar 27 00:23:16 2025

+-----------------------------------------------------------------------------------------+

| NVIDIA-SMI 570.86.10 Driver Version: 570.86.10 CUDA Version: 12.8 |

|-----------------------------------------+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|=========================================+========================+======================|

| 0 NVIDIA GeForce RTX 4090 Off | 00000000:C0:00.0 Off | Off |

| 30% 25C P8 22W / 450W | 439MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

| 1 NVIDIA GeForce RTX 4090 Off | 00000000:D4:00.0 Off | Off |

| 30% 23C P8 22W / 450W | 4MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|=========================================================================================|

| 0 N/A N/A 18 C python3 430MiB |

+-----------------------------------------------------------------------------------------+

观察GPU内存,可以确认容器内部是使用末尾的两块GPU

相关推荐
星际码仔1 小时前
AutoGLM沉思,仍然没有摆脱DeepResearch产品的通病
人工智能·ai编程·chatglm (智谱)
喝拿铁写前端1 小时前
前端与 AI 结合的 10 个可能路径图谱
前端·人工智能
城电科技2 小时前
城电科技|零碳园区光伏太阳花绽放零碳绿色未来
人工智能·科技·能源
HyperAI超神经2 小时前
Stable Virtual Camera 重新定义3D内容生成,解锁图像新维度;BatteryLife助力更精准预测电池寿命
图像处理·人工智能·3d·数学推理·视频生成·对话语音生成·蛋白质突变
Chaos_Wang_2 小时前
NLP高频面试题(二十三)对抗训练的发展脉络,原理,演化路径
人工智能·自然语言处理
zjj5873 小时前
Docker使用ubuntu
java·docker·eureka
Yeats_Liao3 小时前
华为开源自研AI框架昇思MindSpore应用案例:基于MindSpore框架实现PWCNet光流估计
人工智能·华为
说私域3 小时前
人工智能赋能美妆零售数字化转型:基于开源AI大模型的S2B2C商城系统构建
人工智能·小程序·开源·零售
zew10409945883 小时前
基于深度学习的手势识别系统设计
人工智能·深度学习·算法·数据集·pyqt·yolov5·训练模型
weixin_478689763 小时前
pytorch与其他ai工具
人工智能·pytorch·python