【AI】10卡的GPU服务器,Docker 配置 docker-compose.yml 限制指定使用最后两块GPU 序号8,9

GPU状态

复制代码
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:0C:00.0 Off |                  Off |
| 30%   26C    P8             18W /  450W |   23393MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:25:00.0 Off |                  Off |
| 30%   27C    P8             28W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off |   00000000:32:00.0 Off |                  Off |
| 30%   27C    P8              6W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off |   00000000:45:00.0 Off |                  Off |
| 30%   27C    P8             18W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA GeForce RTX 4090        Off |   00000000:58:00.0 Off |                  Off |
| 30%   28C    P8             24W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA GeForce RTX 4090        Off |   00000000:84:00.0 Off |                  Off |
| 30%   27C    P8             21W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA GeForce RTX 4090        Off |   00000000:98:00.0 Off |                  Off |
| 30%   26C    P8             16W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA GeForce RTX 4090        Off |   00000000:AC:00.0 Off |                  Off |
| 30%   28C    P8             27W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   8  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   27C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   9  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

配置docker-compose.yml

services:

ragflow:

environment:

  • NVIDIA_VISIBLE_DEVICES=0,1 # 内部序号还是0,1 不是外部的8,9

deploy:

resources:

reservations:

devices:

  • driver: nvidia

device_ids: ["8","9"]

capabilities: [gpu]

注意:

  1. 内部环境变量仍然是0,1

  2. device_ids参数是字符串数组,不是整形数组

效果:

docker exec -it ragflow-server nvidia-smi

Thu Mar 27 00:23:16 2025

+-----------------------------------------------------------------------------------------+

| NVIDIA-SMI 570.86.10 Driver Version: 570.86.10 CUDA Version: 12.8 |

|-----------------------------------------+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|=========================================+========================+======================|

| 0 NVIDIA GeForce RTX 4090 Off | 00000000:C0:00.0 Off | Off |

| 30% 25C P8 22W / 450W | 439MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

| 1 NVIDIA GeForce RTX 4090 Off | 00000000:D4:00.0 Off | Off |

| 30% 23C P8 22W / 450W | 4MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|=========================================================================================|

| 0 N/A N/A 18 C python3 430MiB |

+-----------------------------------------------------------------------------------------+

观察GPU内存,可以确认容器内部是使用末尾的两块GPU

相关推荐
新智元8 分钟前
学哲学没出路?不好意思,现在哲学就业碾压 CS!
人工智能·openai
AI码上来17 分钟前
当小智 AI 遇上数字人,我用 WebRTC 打造实时音视频应用
人工智能·webrtc·实时音视频
黎燃21 分钟前
智能库存管理的需求预测模型:从业务痛点到落地代码的完整实践
人工智能
机器之心22 分钟前
DPad: 扩散大语言模型的中庸之道,杜克大学陈怡然团队免训推理加速61倍
人工智能·openai
一车小面包28 分钟前
人工智能中的线性代数总结--简单篇
人工智能·numpy
大模型真好玩35 分钟前
深入浅出LangGraph AI Agent智能体开发教程(四)—LangGraph全生态开发工具使用与智能体部署
人工智能·python·mcp
算家计算38 分钟前
OpenAI百亿美元造芯计划曝光,算力争夺战进入新阶段?
人工智能·openai·资讯
百锦再44 分钟前
脚本语言的大浪淘沙或百花争艳
java·开发语言·人工智能·python·django·virtualenv·pygame
拓端研究室1 小时前
Python用PSO优化SVM与RBFN在自动驾驶系统仿真、手写数字分类应用研究
人工智能·机器学习
Shiyuan71 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉