【AI】10卡的GPU服务器,Docker 配置 docker-compose.yml 限制指定使用最后两块GPU 序号8,9

GPU状态

复制代码
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:0C:00.0 Off |                  Off |
| 30%   26C    P8             18W /  450W |   23393MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:25:00.0 Off |                  Off |
| 30%   27C    P8             28W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off |   00000000:32:00.0 Off |                  Off |
| 30%   27C    P8              6W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off |   00000000:45:00.0 Off |                  Off |
| 30%   27C    P8             18W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA GeForce RTX 4090        Off |   00000000:58:00.0 Off |                  Off |
| 30%   28C    P8             24W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA GeForce RTX 4090        Off |   00000000:84:00.0 Off |                  Off |
| 30%   27C    P8             21W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA GeForce RTX 4090        Off |   00000000:98:00.0 Off |                  Off |
| 30%   26C    P8             16W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA GeForce RTX 4090        Off |   00000000:AC:00.0 Off |                  Off |
| 30%   28C    P8             27W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   8  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   27C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   9  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

配置docker-compose.yml

services:

ragflow:

environment:

  • NVIDIA_VISIBLE_DEVICES=0,1 # 内部序号还是0,1 不是外部的8,9

deploy:

resources:

reservations:

devices:

  • driver: nvidia

device_ids: ["8","9"]

capabilities: [gpu]

注意:

  1. 内部环境变量仍然是0,1

  2. device_ids参数是字符串数组,不是整形数组

效果:

docker exec -it ragflow-server nvidia-smi

Thu Mar 27 00:23:16 2025

+-----------------------------------------------------------------------------------------+

| NVIDIA-SMI 570.86.10 Driver Version: 570.86.10 CUDA Version: 12.8 |

|-----------------------------------------+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|=========================================+========================+======================|

| 0 NVIDIA GeForce RTX 4090 Off | 00000000:C0:00.0 Off | Off |

| 30% 25C P8 22W / 450W | 439MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

| 1 NVIDIA GeForce RTX 4090 Off | 00000000:D4:00.0 Off | Off |

| 30% 23C P8 22W / 450W | 4MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|=========================================================================================|

| 0 N/A N/A 18 C python3 430MiB |

+-----------------------------------------------------------------------------------------+

观察GPU内存,可以确认容器内部是使用末尾的两块GPU

相关推荐
档案宝档案管理1 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
IT_Beijing_BIT2 小时前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8242 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_3 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
醉卧雕龙舫 、3 小时前
七.Docker网络
docker
小雨青年3 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus3 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz3 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究3 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习