【AI】10卡的GPU服务器,Docker 配置 docker-compose.yml 限制指定使用最后两块GPU 序号8,9

GPU状态

复制代码
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:0C:00.0 Off |                  Off |
| 30%   26C    P8             18W /  450W |   23393MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:25:00.0 Off |                  Off |
| 30%   27C    P8             28W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off |   00000000:32:00.0 Off |                  Off |
| 30%   27C    P8              6W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off |   00000000:45:00.0 Off |                  Off |
| 30%   27C    P8             18W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA GeForce RTX 4090        Off |   00000000:58:00.0 Off |                  Off |
| 30%   28C    P8             24W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA GeForce RTX 4090        Off |   00000000:84:00.0 Off |                  Off |
| 30%   27C    P8             21W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA GeForce RTX 4090        Off |   00000000:98:00.0 Off |                  Off |
| 30%   26C    P8             16W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA GeForce RTX 4090        Off |   00000000:AC:00.0 Off |                  Off |
| 30%   28C    P8             27W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   8  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   27C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   9  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

配置docker-compose.yml

services:

ragflow:

environment:

  • NVIDIA_VISIBLE_DEVICES=0,1 # 内部序号还是0,1 不是外部的8,9

deploy:

resources:

reservations:

devices:

  • driver: nvidia

device_ids: ["8","9"]

capabilities: [gpu]

注意:

  1. 内部环境变量仍然是0,1

  2. device_ids参数是字符串数组,不是整形数组

效果:

docker exec -it ragflow-server nvidia-smi

Thu Mar 27 00:23:16 2025

+-----------------------------------------------------------------------------------------+

| NVIDIA-SMI 570.86.10 Driver Version: 570.86.10 CUDA Version: 12.8 |

|-----------------------------------------+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|=========================================+========================+======================|

| 0 NVIDIA GeForce RTX 4090 Off | 00000000:C0:00.0 Off | Off |

| 30% 25C P8 22W / 450W | 439MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

| 1 NVIDIA GeForce RTX 4090 Off | 00000000:D4:00.0 Off | Off |

| 30% 23C P8 22W / 450W | 4MiB / 24564MiB | 0% Default |

| | | N/A |

+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|=========================================================================================|

| 0 N/A N/A 18 C python3 430MiB |

+-----------------------------------------------------------------------------------------+

观察GPU内存,可以确认容器内部是使用末尾的两块GPU

相关推荐
淮北4947 小时前
图神经网络与pytorch
人工智能·pytorch·神经网络
模型启动机7 小时前
微软确认:Windows 11 AI 智能体访问用户文件前会先请求许可
人工智能·microsoft·ai·大模型
Coovally AI模型快速验证7 小时前
复杂工业场景如何实现3D实例与部件一体化分割?多视角贝叶斯融合的分层图像引导框
人工智能·深度学习·计算机视觉·3d·语言模型·机器人
易连EDI—EasyLink7 小时前
EDI数据交换2026年展望:洞察2026年EDI数据交换的新范式
大数据·人工智能·edi·电子数据交换·as2
PHOSKEY7 小时前
3D工业相机提升晶圆承载部件工艺质量
人工智能
是Yu欸7 小时前
【征文计划】智旅无界:Rokid智能眼镜赋能下一代个性化旅游体验开发指南
人工智能·旅游·个性化·智能眼镜·rokid
丝斯20117 小时前
AI学习笔记整理(33)—— 视觉Transformer (ViT)与自注意力机制
人工智能·笔记·学习
2401_841495647 小时前
【自然语言处理】中文文本字频统计与交互式可视化工具
人工智能·python·自然语言处理·多线程·分块读取·文本分析·字频统计
十铭忘7 小时前
SAM2跟踪的理解8——mask decoder
人工智能·计算机视觉
.hopeful.7 小时前
Docker——初识
服务器·docker·微服务·容器·架构