Yolo_v8的安装测试

前言

如何安装Python版本的Yolo,有一段时间不用了,Yolo的版本也在不断地发展,所以重新安装了运行了一下,记录了下来,供参考。

一、搭建环境

1.1、创建Pycharm工程

首先创建好一个空白的工程,如下图:

1.2、查看cuda的版本

可以,获知当前电脑安装的cuda版本是12.1。

​​​​​​​1.3、安装cuda版本的Pytorch

先安装mkl

再用已有文件安装cuda版本的Pytorch,如下图:

这个安装当中之所以出现,原有torch版本的卸载问题,是因为工程继承自系统的Python311,已经安装了cpu版本的torch的缘故,这个uninstall后并不影响后续的安装。

我们,可以查看安装后的情况,如下图:

​​​​​​​1.4、一个测试Pytorch的简单程序

说明,cuda版本的Pytorch已经完全可用了。

二、Yolov8的安装

2.1、参考链接

2024最新的YOLOv8安装配置全流程,人人都可以学会的图像识别技术指南-CSDN博客

2.2 、安装 ultralytics

直接输入:pip install ultralytics

但是,这样做的后果是,安装了最新版本的ultralytics,导致torch也要进行更新,于是它就自动这样做了,如下图:

然后,你看,这个torch就已经不支持cuda了,如下图:

不过,这个也不要紧(cpu版本的torch也能用,这不是本文的重点),我们继续:

查看当前的yolo版本,如下图:

三、下载源码开始测试

官网下载源码:https://github.com/ultralytics/ultralytics

如图:

其实,这个版本,已经不是Yolov8,而是Yolov11了。

(是Yolov8还是Yolov11主要决定的是模型文件,而非整体代码,整体代码而言应该是兼容Yolov8和Yolov11的)

先下载下来,然后复制到Pycharm工程中进行测试,如图:

3.1、先做一个预测测试

输入:yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' device=cpu

然后,我们查看这个预测的结果:

显然这个预测是符合我们预测要求的。

3.2、在线coco训练测试

采用在线下载coco包的方式进行测试:

yolo train model = yolov8n.pt data = coco128.yaml epochs = 10 imgsz = 640

训练结束,如下图:

我们可以查看训练的结果:

3.3、离线coco训练测试

将coco128.yaml中的内容进行了修改,删除了其中Download部分,

并将其中的文件和标签的路径修改如下:

并且,将coco集中images和labels复制到对应的位置,如图:

至此,可采用自定义的my_coco128.yaml进行离线训练了,

输入:yolo train model = yolov8n.pt data = my_coco128.yaml epochs = 10 imgsz = 640

运行完毕,如下图:

运行结果是一致的,如下图:

为什么要这样做呢?就是为了后续训练自己打标的图片做准备。

相关推荐
过往入尘土41 分钟前
深度学习之opencv篇
人工智能·深度学习·opencv
人工智能训练师1 小时前
华为服务器如何部署Mindie镜像
linux·人工智能·docker
MUTA️1 小时前
《CogAgent: A Visual Language Model for GUI Agents》论文精读笔记
人工智能·笔记·语言模型·多模态
数据知道1 小时前
机器翻译:语料库的定义与获取,及语料预处理
人工智能·自然语言处理·机器翻译
山烛1 小时前
OpenCV 图像处理基础操作指南(一)
图像处理·人工智能·python·opencv·计算机视觉
元宇宙时间2 小时前
引领GameFi 2.0新范式:D.Plan携手顶级财经媒体启动“龙珠创意秀”
人工智能·web3·区块链
xw33734095642 小时前
scikit-learn工具介绍
python·机器学习·scikit-learn
NeoFii2 小时前
Day 34:GPU训练与类的call方法
python·机器学习
跨境猫小妹2 小时前
亚马逊卖家反馈机制变革:纯星级评级时代的合规挑战与运营重构
大数据·人工智能·重构·跨境电商·亚马逊
沫儿笙3 小时前
KUKA库卡焊接机器人氩气节气设备
人工智能·机器人