Yolo_v8的安装测试

前言

如何安装Python版本的Yolo,有一段时间不用了,Yolo的版本也在不断地发展,所以重新安装了运行了一下,记录了下来,供参考。

一、搭建环境

1.1、创建Pycharm工程

首先创建好一个空白的工程,如下图:

1.2、查看cuda的版本

可以,获知当前电脑安装的cuda版本是12.1。

​​​​​​​1.3、安装cuda版本的Pytorch

先安装mkl

再用已有文件安装cuda版本的Pytorch,如下图:

这个安装当中之所以出现,原有torch版本的卸载问题,是因为工程继承自系统的Python311,已经安装了cpu版本的torch的缘故,这个uninstall后并不影响后续的安装。

我们,可以查看安装后的情况,如下图:

​​​​​​​1.4、一个测试Pytorch的简单程序

说明,cuda版本的Pytorch已经完全可用了。

二、Yolov8的安装

2.1、参考链接

2024最新的YOLOv8安装配置全流程,人人都可以学会的图像识别技术指南-CSDN博客

2.2 、安装 ultralytics

直接输入:pip install ultralytics

但是,这样做的后果是,安装了最新版本的ultralytics,导致torch也要进行更新,于是它就自动这样做了,如下图:

然后,你看,这个torch就已经不支持cuda了,如下图:

不过,这个也不要紧(cpu版本的torch也能用,这不是本文的重点),我们继续:

查看当前的yolo版本,如下图:

三、下载源码开始测试

官网下载源码:https://github.com/ultralytics/ultralytics

如图:

其实,这个版本,已经不是Yolov8,而是Yolov11了。

(是Yolov8还是Yolov11主要决定的是模型文件,而非整体代码,整体代码而言应该是兼容Yolov8和Yolov11的)

先下载下来,然后复制到Pycharm工程中进行测试,如图:

3.1、先做一个预测测试

输入:yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' device=cpu

然后,我们查看这个预测的结果:

显然这个预测是符合我们预测要求的。

3.2、在线coco训练测试

采用在线下载coco包的方式进行测试:

yolo train model = yolov8n.pt data = coco128.yaml epochs = 10 imgsz = 640

训练结束,如下图:

我们可以查看训练的结果:

3.3、离线coco训练测试

将coco128.yaml中的内容进行了修改,删除了其中Download部分,

并将其中的文件和标签的路径修改如下:

并且,将coco集中images和labels复制到对应的位置,如图:

至此,可采用自定义的my_coco128.yaml进行离线训练了,

输入:yolo train model = yolov8n.pt data = my_coco128.yaml epochs = 10 imgsz = 640

运行完毕,如下图:

运行结果是一致的,如下图:

为什么要这样做呢?就是为了后续训练自己打标的图片做准备。

相关推荐
范桂飓9 分钟前
英语口语错题集
人工智能
是麟渊14 分钟前
【论文解读】| ACL2024 | LANDeRMT:基于语言感知神经元路由的大模型机器翻译微调框架
人工智能·自然语言处理·机器翻译
白熊18820 分钟前
【计算机视觉】3DDFA_V2中表情与姿态解耦及多任务平衡机制深度解析
人工智能·计算机视觉·3d
仙人掌_lz24 分钟前
微调ModernBERT为大型语言模型打造高效“过滤器”
人工智能·python·ai·语言模型·自然语言处理·bert
小众AI28 分钟前
fastmcp: 更好用的 MCP Python 框架
开发语言·人工智能·python
cdut_suye31 分钟前
【Linux系统】从零开始构建简易 Shell:从输入处理到命令执行的深度剖析
java·linux·服务器·数据结构·c++·人工智能·python
沛沛老爹32 分钟前
CROSS 技术全解析:边缘计算如何成为行业价值新引擎
人工智能·边缘计算·security·connectivity·optimization·smart·cross
小屁孩大帅-杨一凡37 分钟前
Azure Document Intelligence
后端·python·microsoft·flask·azure
尽兴-38 分钟前
边缘计算:技术概念与应用详解
人工智能·边缘计算
一切皆有可能!!44 分钟前
(2025)图文解锁RAG从原理到实操
人工智能·语言模型