双目立体视觉的3D重建全流程

​双目立体视觉的3D重建全流程

以下是基于双目相机的3D重建标准流程,明确标注极线矫正(Epipolar Rectification)和图间点匹配(Feature Matching)的具体步骤及其作用:

​1. 相机标定(Camera Calibration)​

​目的:获取相机内参(焦距 f、主点 (cx ,cy)、畸变系数)和外参(旋转矩阵 R、平移向量 T)。

​方法:使用标定板(如棋盘格)拍摄多组图像,通过张正友标定法计算参数。

​公式:

K 为内参矩阵,B 为基线长度。

​ 2. 图像采集(Image Acquisition)​

同步捕获左右相机的图像,确保场景一致性。

​关键点:避免光照变化、运动模糊和遮挡。

3. 极线矫正(Epipolar Rectification)​

​位置:流程中预处理阶段,在特征匹配之前。

​目的:消除垂直视差,使极线水平对齐,简化后续匹配。

​步骤:

利用标定得到的 R 和 T,计算左右图像的矫正映射矩阵。

对原始图像进行重投影,生成共面且极线水平的矫正图像。

​公式:

为旋转矩阵,确保光轴平行。

​4. 图间点匹配(Feature Matching)​

​位置:极线矫正后,​立体匹配(Stereo Matching)阶段的核心步骤。

​目的:在左右矫正图像中找到对应像素点,计算水平视差。

​方法:

​局部匹配:滑动窗口法(如SAD、SSD、NCC)。

​全局匹配:动态规划、图割(Graph Cut)。

​深度学习:PSMNet、GC-Net等端到端视差预测网络。

​输出:生成视差图(Disparity Map),每个像素值为左右图像的水平位移。

​## 5. 深度图计算(Depth Map Generation)​

​公式:

d 为视差,Z 为深度,B 为基线长度,f 为焦距。

​优化:通过滤波(中值滤波、双边滤波)去除噪声,填补空洞。

​6. 三维重建(3D Reconstruction)​

​坐标转换:将深度图转换为三维点云。

​输出:生成点云(Point Cloud)或网格模型(Mesh),可用于可视化或进一步分析。

相关推荐
TG:@yunlaoda360 云老大14 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
心 爱心 爱14 小时前
Shape-Guided Dual-Memory Learning for 3D Anomaly Detection 论文精读
计算机视觉·3d·异常检测·工业异常检测·三维异常检测·多模态工业异常检测·二维异常检测
gaosushexiangji19 小时前
一项基于高灵敏度sCMOS相机的光镊成像实验
数码相机
geobuilding1 天前
将大规模shp白模贴图转3dtiles倾斜摄影,并可单体化拾取建筑
算法·3d·智慧城市·数据可视化·贴图
美摄科技2 天前
什么是3D贴纸SDK?
3d
王哈哈^_^2 天前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
不一样的故事1262 天前
iPhone 17 Pro Max 的评测和用户反馈
数码相机·智能手机·iphone
一只在学习的瓶子2 天前
Camera性能
数码相机
第二层皮-合肥2 天前
图像处理中的暗场校正
图像处理·数码相机·计算机视觉
HelloRevit2 天前
快速入门 - Azure 数字孪生的 3D 场景工作室(预览版)入门
3d·flask·azure