双目立体视觉的3D重建全流程

​双目立体视觉的3D重建全流程

以下是基于双目相机的3D重建标准流程,明确标注极线矫正(Epipolar Rectification)和图间点匹配(Feature Matching)的具体步骤及其作用:

​1. 相机标定(Camera Calibration)​

​目的:获取相机内参(焦距 f、主点 (cx ,cy)、畸变系数)和外参(旋转矩阵 R、平移向量 T)。

​方法:使用标定板(如棋盘格)拍摄多组图像,通过张正友标定法计算参数。

​公式:

K 为内参矩阵,B 为基线长度。

​ 2. 图像采集(Image Acquisition)​

同步捕获左右相机的图像,确保场景一致性。

​关键点:避免光照变化、运动模糊和遮挡。

3. 极线矫正(Epipolar Rectification)​

​位置:流程中预处理阶段,在特征匹配之前。

​目的:消除垂直视差,使极线水平对齐,简化后续匹配。

​步骤:

利用标定得到的 R 和 T,计算左右图像的矫正映射矩阵。

对原始图像进行重投影,生成共面且极线水平的矫正图像。

​公式:

为旋转矩阵,确保光轴平行。

​4. 图间点匹配(Feature Matching)​

​位置:极线矫正后,​立体匹配(Stereo Matching)阶段的核心步骤。

​目的:在左右矫正图像中找到对应像素点,计算水平视差。

​方法:

​局部匹配:滑动窗口法(如SAD、SSD、NCC)。

​全局匹配:动态规划、图割(Graph Cut)。

​深度学习:PSMNet、GC-Net等端到端视差预测网络。

​输出:生成视差图(Disparity Map),每个像素值为左右图像的水平位移。

​## 5. 深度图计算(Depth Map Generation)​

​公式:

d 为视差,Z 为深度,B 为基线长度,f 为焦距。

​优化:通过滤波(中值滤波、双边滤波)去除噪声,填补空洞。

​6. 三维重建(3D Reconstruction)​

​坐标转换:将深度图转换为三维点云。

​输出:生成点云(Point Cloud)或网格模型(Mesh),可用于可视化或进一步分析。

相关推荐
一碗白开水一11 小时前
【论文阅读】Far3D: Expanding the Horizon for Surround-view 3D Object Detection
论文阅读·人工智能·深度学习·算法·目标检测·计算机视觉·3d
接着奏乐接着舞。11 小时前
3D地球可视化教程 - 第1篇:基础地球渲染系统
前端·javascript·vue.js·3d·three.js
XiaoMu_00112 小时前
基于Node.js和Three.js的3D模型网页预览器
javascript·3d·node.js
Hi Z x y14 小时前
3dtiles 加载问题
3d
北岛三生14 小时前
ISP(图像信号处理器)
图像处理·数码相机·测试工具·计算机视觉·测试用例·模块测试
二川bro21 小时前
第27节:3D数据可视化与大规模地形渲染
3d·信息可视化
兔子不吃草~1 天前
鱼眼相机模型
数码相机
北岛三生1 天前
Camera tuning flow相机调试流程
图像处理·数码相机·测试工具·模块测试
南山二毛1 天前
机器人控制器开发(传感器层——奥比大白相机适配)
数码相机·机器人
周小码1 天前
CesiumJS详解:打造专业级Web 3D地球仪与地图的JavaScript库
前端·javascript·3d