13届省赛python A组:10.数的拆分

题目1 数的拆分

给定 T 个正整数 ai,分别问每个 ai 能否表示为 x 1 y 1 ⋅ x 2 y 2 x1^{y1}⋅x2^{y2} x1y1⋅x2y2 的形式,其中 x1,x2 为正整数,y1,y2 为大于等于 2 的正整数。

输入格式

输入第一行包含一个整数 T 表示询问次数。

接下来 T 行,每行包含一个正整数 ai。

输出格式

对于每次询问, 如果 ai 能够表示为题目描述的形式则输出 yes,否则输出 no

数据范围

对于 10% 的评测用例, 1 ≤ T ≤ 200 , a i ≤ 1 0 9 1≤T≤200,ai≤10^9 1≤T≤200,ai≤109;

对于 30% 的评测用例, 1 ≤ T ≤ 300 , a i ≤ 1 0 18 1≤T≤300,ai≤10^{18} 1≤T≤300,ai≤1018;

对于 60% 的评测用例, 1 ≤ T ≤ 10000 , a i ≤ 1 0 18 1≤T≤10000,ai≤10^{18} 1≤T≤10000,ai≤1018;

对于所有评测用例, 1 ≤ T ≤ 100000 , 1 ≤ a i ≤ 1 0 18 1≤T≤100000,1≤ai≤10^{18} 1≤T≤100000,1≤ai≤1018。

输入样例:
复制代码
7
2
6
12
4
8
24
72

思路

从样例中发现输出yes的有三种情况:

  • 平方数,4,16这种
  • 立方数,8,27,这种
  • 普通的, x 1 y 1 ∗ x 2 y 2 x_1^{y1} *x_{2}^{y2} x1y1∗x2y2
  1. 注意判断立方数的时候,int(round(x**(1/3)))存在精度误差,所以采用向上逼近的方式判断
  2. N为什么取5000,几乎满足所有算法题目筛质数的要求了
  3. p*p>n,此时n本身是一个大质数,没必要继续分解了(任何一个合数都至少有一个质数因子<=sqrt(n))

python代码

python 复制代码
from math import *
def check1(n):#验证n是否是平方数
    y=int(sqrt(n))
    if y**2==n:
        return True
    return False

def check2(n):#验证n是否是立方数
    y=int(round(n**(1/3)))
    while y**3<=n:
        if y**3==n:
            return True
        y+=1
    return False

def get_primes(n):
    isprime=[True]*(n+1)
    isprime[0]=isprime[1]=False
    primes=[]
    for i in range(2,n+1):
        if isprime[i]:
            primes.append(i)
        for p in primes:
            if i*p>n:
                break
            isprime[i*p]=False
            if i%p==0:
                break
    return primes
#提前计算or每个计算一次?
N=int(5000)#几乎对于所有题目已经够用了
primes=get_primes(N)
t=int(input())
for i in range(t):
    n=int(input())
    flag=True
    if check1(n) or check2(n):
        print('yes')
        continue
    for p in primes:
        if p*p>n:
            break
        if n%p==0:
            cnt=0
            while n%p==0:
                n//=p
                cnt+=1
            if cnt==1:
                flag=False
                break
    if n>1 and not(check1(n) or check2(n)):
        flag=False
    print('yes' if flag else 'no')

知识点

蓝桥杯笔记:蓝桥杯备赛笔记

  1. 埃氏筛
  2. 数学知识:所有的合数n至少含有一个<=sqrt(n)的质因子
  3. y=int(round(x**(1/3)))是浮点运算,需要验证y**3==x or (y+1)**3==x
相关推荐
大霞上仙16 分钟前
nonlocal 与global关键字
开发语言·python
Mark_Aussie43 分钟前
Flask-SQLAlchemy使用小结
python·flask
程序员阿龙1 小时前
【精选】计算机毕业设计Python Flask海口天气数据分析可视化系统 气象数据采集处理 天气趋势图表展示 数据可视化平台源码+论文+PPT+讲解
python·flask·课程设计·数据可视化系统·天气数据分析·海口气象数据·pandas 数据处理
ZHOU_WUYI1 小时前
Flask与Celery 项目应用(shared_task使用)
后端·python·flask
且慢.5891 小时前
Python_day47
python·深度学习·计算机视觉
佩奇的技术笔记1 小时前
Python入门手册:异常处理
python
大写-凌祁2 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
爱喝喜茶爱吃烤冷面的小黑黑2 小时前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
Blossom.1183 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
Love__Tay4 小时前
【学习笔记】Python金融基础
开发语言·笔记·python·学习·金融