基于S函数的simulink仿真

基于S函数的simulink仿真

S函数可以用计算机语言来描述动态系统 。在控制系统设计中,S函数可以用来描述控制算法、自适应算法和模型动力学方程

S函数中使用文本方式输入公式和方程,适合复杂动态系统的数学描述,并且在仿真过程中可以对仿真参数进行更精确的描述、

1.1 S函数简介

S函数是系统函数(system function)的简称。可以用MATLAB代码、C、C++等语言来编写S函数。

1.2 S函数的使用步骤

步骤如下:

  1. 创建S函数源文件
  2. 在动态系统的simulink模型框图中添加S-function模块,并且进行正确设置
  3. 在simulink模型框图中按照定义好的功能连接输入输出端口

1.3 S函数的基本功能及重要参数设定

S函数的基本功能及重要参数设定如下:

  1. S函数功能模块:各种功能模块完成不同的任务,这些功能模块(函数)称为仿真例程或回调函数(call - back functions),包括初始化(initialization)、导数(mdlDerivative)、输出(mdlOutput)等。
  2. NumContStates表示S - 函数描述的模块中连续状态的个数。
  3. NumDiscStates表示离散状态的个数。
  4. NumOutputs和NumInputs分别表示模块输出和输入的个数。
  5. 直接馈通(dirFeedthrough)为输入信号是否在输出端出现的标识,取值为0或1。例如,形如 y = k × u y = k×u y=k×u的系统需要输入(即直接反馈),其中, u u u是输入, k k k是增益, y y y是输出,形如等式 y = x , x ˙ = u y = x,\dot{x}=u y=x,x˙=u的系统不需要输入(即不存在直接反馈),其中, x x x是状态, u u u是输入, y y y为输出。
  6. NumSampleTimes为模块采样周期的个数,S函数支持多采样周期的系统。 除了sys外,还应设置系统的初始状态变量 x 0 x_0 x0、说明变量str和采样周期变量 t s t_s ts。 t s t_s ts变量为双列矩阵,其中每一行对应一个采样周期。对连续系统和单个采样周期的系统来说,该变量为 [ t 1 , t 2 ] [t_1,t_2] [t1,t2], t 1 t_1 t1为采样周期, t 1 = − 1 t_1 = - 1 t1=−1表示继承输入信号的采样周期, t 2 t_2 t2为偏移量,一般取为0。对连续系统来说, t s t_s ts取为 [ − 1 , 0 ] [-1,0] [−1,0]。

1.4 S函数描述实例

在控制系统设计中,S函数可以用于控制器、自适应律和模型描述。

以模型 J θ ¨ = u + d ( t ) J\ddot{\theta}=u+d(t) Jθ¨=u+d(t)为例,其中, u u u为控制输入, d ( t ) d(t) d(t)为加在控制输入端的扰动,模型输出为 θ 和 θ ˙ \theta和\dot{\theta} θ和θ˙,即转动角度和角速度, J J J为转动惯量,该模型可以描述如下:
x ˙ 1 = x 2 x ˙ 2 = 1 J ( u + d ( t ) ) \begin{align*} \dot{x}_1&=x_2\\ \dot{x}_2&=\frac{1}{J}(u + d(t)) \end{align*} x˙1x˙2=x2=J1(u+d(t))

其中: x 1 = θ , x 2 = θ ˙ x_1=\theta ,x_2=\dot{\theta} x1=θ,x2=θ˙

1 首先,初始化Initialization函数

采用S函数来描述动力学方程,可选取1输人2输出系统,如果角度和角速度的初始值取零,则模型初始化参数写为[0,0],模型初始化S函数描述如下:(见模板)

2 微分方程描述的mdlDerivative函数

该函数可用于描述微分方程并实现数值求解。在控制系统中,可以采样该函数来描述被控对象和自适应律等,并通过Simulink环境下选择数值分析方法来实现对模型的数值求解

取 J = 2 , d ( t ) = s i n t J=2,d(t)=sint J=2,d(t)=sint,则采用S函数可以实现模型角度和角速度的求解,描述如下:

matlab 复制代码
function sys=mdlDerivatives(t,x,u)

J=2;
dt=sin(t);
ut=u(1);
sys(1)=x(2);
sys(2)=1/J*(ut+dt);

sys = [dx1;dx2];

3 用于输出的mdlOutput函数

S函数的mdlOutput函数通常用于描述控制器或模型的输出。采用S函数的mdlOutput模块来描述模型角度和角速度的输出:

matlab 复制代码
function sys=mdlOutputs(t,x,u)

sys(1) = x(1);
sys(2) = x(2);

最后,给出S函数模板

matlab 复制代码
function [sys,x0,str,ts,simStateCompliance] = plant(t,x,u,flag,pa)
%SFUNTMPL General MATLAB S-Function Template
%   With MATLAB S-functions, you can define you own ordinary differential
%   equations (ODEs), discrete system equations, and/or just about
%   any type of algorithm to be used within a Simulink block diagram.
%
%   The general form of an MATLAB S-function syntax is:
%       [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] = SFUNC(T,X,U,FLAG,P1,...,Pn)
%
%   What is returned by SFUNC at a given point in time, T, depends on the
%   value of the FLAG, the current state vector, X, and the current
%   input vector, U.
%
%   FLAG   RESULT             DESCRIPTION
%   -----  ------             --------------------------------------------
%   0      [SIZES,X0,STR,TS]  Initialization, return system sizes in SYS,
%                             initial state in X0, state ordering strings
%                             in STR, and sample times in TS.
%   1      DX                 Return continuous state derivatives in SYS.
%   2      DS                 Update discrete states SYS = X(n+1)
%   3      Y                  Return outputs in SYS.
%   4      TNEXT              Return next time hit for variable step sample
%                             time in SYS.
%   5                         Reserved for future (root finding).
%   9      []                 Termination, perform any cleanup SYS=[].
%
%
%   The state vectors, X and X0 consists of continuous states followed
%   by discrete states.
%
%   Optional parameters, P1,...,Pn can be provided to the S-function and
%   used during any FLAG operation.
%
%   When SFUNC is called with FLAG = 0, the following information
%   should be returned:
%
%      SYS(1) = Number of continuous states.
%      SYS(2) = Number of discrete states.
%      SYS(3) = Number of outputs.
%      SYS(4) = Number of inputs.
%               Any of the first four elements in SYS can be specified
%               as -1 indicating that they are dynamically sized. The
%               actual length for all other flags will be equal to the
%               length of the input, U.
%      SYS(5) = Reserved for root finding. Must be zero.
%      SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
%               has direct feedthrough if U is used during the FLAG=3
%               call. Setting this to 0 is akin to making a promise that
%               U will not be used during FLAG=3. If you break the promise
%               then unpredictable results will occur.
%      SYS(7) = Number of sample times. This is the number of rows in TS.
%
%
%      X0     = Initial state conditions or [] if no states.
%
%      STR    = State ordering strings which is generally specified as [].
%
%      TS     = An m-by-2 matrix containing the sample time
%               (period, offset) information. Where m = number of sample
%               times. The ordering of the sample times must be:
%
%               TS = [0      0,      : Continuous sample time.
%                     0      1,      : Continuous, but fixed in minor step
%                                      sample time.
%                     PERIOD OFFSET, : Discrete sample time where
%                                      PERIOD > 0 & OFFSET < PERIOD.
%                     -2     0];     : Variable step discrete sample time
%                                      where FLAG=4 is used to get time of
%                                      next hit.
%
%               There can be more than one sample time providing
%               they are ordered such that they are monotonically
%               increasing. Only the needed sample times should be
%               specified in TS. When specifying more than one
%               sample time, you must check for sample hits explicitly by
%               seeing if
%                  abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
%               is within a specified tolerance, generally 1e-8. This
%               tolerance is dependent upon your model's sampling times
%               and simulation time.
%
%               You can also specify that the sample time of the S-function
%               is inherited from the driving block. For functions which
%               change during minor steps, this is done by
%               specifying SYS(7) = 1 and TS = [-1 0]. For functions which
%               are held during minor steps, this is done by specifying
%               SYS(7) = 1 and TS = [-1 1].
%
%      SIMSTATECOMPLIANCE = Specifices how to handle this block when saving and
%                           restoring the complete simulation state of the
%                           model. The allowed values are: 'DefaultSimState',
%                           'HasNoSimState' or 'DisallowSimState'. If this value
%                           is not speficified, then the block's compliance with
%                           simState feature is set to 'UknownSimState'.


%   Copyright 1990-2010 The MathWorks, Inc.

%
% The following outlines the general structure of an S-function.
%
switch flag,

  %%%%%%%%%%%%%%%%%%
  % Initialization %
  %%%%%%%%%%%%%%%%%%
  case 0,
    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;

  %%%%%%%%%%%%%%%
  % Derivatives %
  %%%%%%%%%%%%%%%
  case 1,
    sys=mdlDerivatives(t,x,u,pa);

  %%%%%%%%%%
  % Update %
  %%%%%%%%%%
  case 2,
    sys=mdlUpdate(t,x,u);

  %%%%%%%%%%%
  % Outputs %
  %%%%%%%%%%%
  case 3,
    sys=mdlOutputs(t,x,u);

  %%%%%%%%%%%%%%%%%%%%%%%
  % GetTimeOfNextVarHit %
  %%%%%%%%%%%%%%%%%%%%%%%
  case 4,
    sys=mdlGetTimeOfNextVarHit(t,x,u);

  %%%%%%%%%%%%%
  % Terminate %
  %%%%%%%%%%%%%
  case 9,
    sys=mdlTerminate(t,x,u);

  %%%%%%%%%%%%%%%%%%%%
  % Unexpected flags %
  %%%%%%%%%%%%%%%%%%%%
  otherwise
    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));

end

% end sfuntmpl

%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes

%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded.  This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
sizes = simsizes;

sizes.NumContStates  = 2;
sizes.NumDiscStates  = 0;
sizes.NumOutputs     = 2;
sizes.NumInputs      = 1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;   % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
x0  = [0,0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts  = [0 0];

% Specify the block simStateCompliance. The allowed values are:
%    'UnknownSimState', < The default setting; warn and assume DefaultSimState
%    'DefaultSimState', < Same sim state as a built-in block
%    'HasNoSimState',   < No sim state
%    'DisallowSimState' < Error out when saving or restoring the model sim state
simStateCompliance = 'UnknownSimState';

% end mdlInitializeSizes

%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
function sys=mdlDerivatives(t,x,u,pa)
k=pa.k;
m=pa.m;

x1=x(1);
x2=x(2);

dx1=x2;
dx2=-k/m*x1^3+u/m;

sys = [dx1;dx2];

% end mdlDerivatives

%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function sys=mdlOutputs(t,x,u)

sys = x;

% end mdlOutputs

%
%=============================================================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block.  Note that the result is
% absolute time.  Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in
% mdlInitializeSizes.
%=============================================================================
%
function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1;    %  Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
%
function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate
相关推荐
阿坡RPA14 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499314 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心15 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI17 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c17 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20518 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清18 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh18 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员18 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物19 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技