辅助查询是根据查询到的文档片段再去生成新的查询问题

💡 辅助查询是怎么来的?

它是基于你当前查询(query)检索到的某个文档片段(chunk_result),再去"反推"出新的相关问题(utility queries),这些问题的作用是:

  • 引导系统从更多角度理解这个文档;
  • 为后续推理、回答或补充背景知识做准备。

🧠 举个非常贴近实际的例子:

假设你问的是:

"公司的治理结构是怎样的?"

系统用这个问题去检索文档,拿到了以下 chunk_result

"根据公司章程,公司治理结构包括股东大会、董事会、监事会和高级管理层,各自职责如下......"

接着,系统会调用:

python 复制代码
utility_queries = self.utility_query_generator.generate_queries(
    chunk=str(chunk_result),     # 传入文档片段内容
    max_queries=2,
    existing_graph_queries=...
)

🔍 那这个 generate_queries 做的事,就是用语言模型或者类似的规则模板,生成类似这样的问题:

  • "董事会的职责有哪些?"
  • "高级管理层如何履行监督义务?"
  • "治理结构中的监事会作用是什么?"

👉 所以,它的目标是"站在系统的视角",主动提出更多细化问题,把这个 chunk 挖得更深。


🚨 注意:它不是基于原始用户提问,而是基于"当前文档片段"

虽然初始用户提问是引发这一切的触发点,但 辅助查询其实是"chunk 驱动"的,而不是"query 驱动的"。

也就是说:

原始用户问题 → 检索出 chunk → 系统看了 chunk 后自己想出的新问题


🧭 为什么这么设计?有啥好处?

这其实是一种很聪明的"文档自我探索机制":

优势 说明
💡 自动挖掘潜在知识 哪怕用户没问,系统也能主动发现重要内容
🔄 扩展语义图谱 生成的 utility query 可以丰富知识图谱、内存
🤖 改进推理表现 为后续 LLM 回答时提供更多上下文依据
🧠 有助记忆召回 作为补充 query 被记录,以备后续召回

✅ 总结一句话:

辅助查询是系统基于已检索文档片段,自动生成的新问题,用来更深入理解文档内容。

相关推荐
视觉语言导航4 小时前
慕尼黑工业大学具身机器人实时环境探索!FindAnything:基于开放词汇对象中心映射的机器人任意环境认知与导航
人工智能·机器人·无人机·具身智能
未来智慧谷4 小时前
黄仁勋链博会首秀:中国开源AI催化全球革命,机器人浪潮重塑未来工厂
人工智能·机器人·开源
ZYLAB7 小时前
Vibe Coding 时代的职业排序:运营>设计>产品>测试>程序员
人工智能·程序员·产品
沫儿笙9 小时前
弧焊机器人智能节气装置
人工智能·机器人
金融小师妹9 小时前
数据驱动视角下的黄金异动解析:多因子模型验证鲍威尔去留与金价关联性
大数据·人工智能·算法
伊织code9 小时前
OpenCV 官翻6 - Computational Photography
人工智能·opencv·计算机视觉·去噪·hdr·修复·曝光
亲持红叶9 小时前
神经网络常见激活函数 13-Softplus函数
人工智能·深度学习·神经网络
nightunderblackcat10 小时前
[AI风堇]基于ChatGPT3.5+科大讯飞录音转文字API+GPT-SOVITS的模拟情感实时语音对话项目
人工智能·gpt·gpt-3
双翌视觉10 小时前
机器视觉的布料丝印应用
人工智能·数码相机·机器视觉