Python 实现对Excel 文件的统计与处理

以下是根据 学生所在初中学校成绩段 进行均衡分班的 Python 代码。目标是让每个班级的学生在成绩分布和学校来源上尽量均衡。


输入文件示例 (students.xlsx)

学生姓名 初中学校 成绩
张三 学校A 85
李四 学校B 92
王五 学校A 78
... ... ...

代码实现

python 复制代码
import pandas as pd
import numpy as np

def balanced_class_assignment(input_file, output_file, num_classes=3, score_bins=[60, 75, 90, 100]):
    """
    按初中学校和成绩段均衡分班
    :param input_file: 输入Excel文件路径
    :param output_file: 输出Excel文件路径
    :param num_classes: 班级数量(默认3个班)
    :param score_bins: 成绩分段区间(默认[60,75,90,100])
    """
    try:
        # 读取数据并添加'成绩段'列
        df = pd.read_excel(input_file)
        df['成绩段'] = pd.cut(df['成绩'], bins=score_bins, labels=[f"{score_bins[i]}-{score_bins[i+1]}" for i in range(len(score_bins)-1)])
        
        # 按学校和成绩段分组
        grouped = df.groupby(['初中学校', '成绩段'])
        
        # 分配班级:每组内轮流分配学生到不同班级
        df['班级'] = np.nan
        for (school, score_range), group in grouped:
            students = group.sample(frac=1).reset_index(drop=True)  # 随机打乱顺序
            class_labels = np.tile(np.arange(1, num_classes+1), len(students) // num_classes + 1)[:len(students)]
            df.loc[students.index, '班级'] = class_labels
        
        # 处理剩余未分配的学生(极少数情况)
        df['班级'] = df['班级'].fillna(method='ffill').astype(int)
        
        # 输出分班结果到Excel
        with pd.ExcelWriter(output_file, engine='openpyxl') as writer:
            # 按班级写入不同Sheet
            for class_num in range(1, num_classes+1):
                class_df = df[df['班级'] == class_num]
                class_df.to_excel(writer, sheet_name=f'班级{class_num}', index=False)
            
            # 汇总统计表
            stats = df.pivot_table(
                index=['初中学校', '成绩段'],
                columns='班级',
                values='学生姓名',
                aggfunc='count',
                fill_value=0
            )
            stats.to_excel(writer, sheet_name='分班统计')
        
        print(f"分班完成!结果已保存至: {output_file}")

    except Exception as e:
        print(f"处理失败: {str(e)}")

# 使用示例
if __name__ == "__main__":
    balanced_class_assignment(
        input_file="students.xlsx",
        output_file="分班结果.xlsx",
        num_classes=3,
        score_bins=[60, 75, 90, 100]  # 自定义成绩段
    )

输出文件说明

  1. 分班结果.xlsx 包含:
    • 班级1、班级2、班级3:每个班级的学生名单。
    • 分班统计:各初中学校+成绩段的学生在班级间的分布。
初中学校 成绩段 班级1 班级2 班级3
学校A 75-90 2 2 1
学校A 90-100 1 1 0
学校B 60-75 3 2 3

关键逻辑

  1. 成绩分段

    • 使用 pd.cut 将成绩划分为区间(例如 60-75, 75-90, 90-100)。
    • 可通过 score_bins 参数自定义分段。
  2. 分组均衡分配

    • 初中学校 + 成绩段 分组。
    • 每组内随机打乱学生顺序,然后循环分配学生到不同班级(例如:学生1→班1,学生2→班2,学生3→班3,学生4→班1)。
  3. 处理余数

    • 如果某组学生数不能被班级数整除,余数会被依次分配到前几个班级(例如:5个学生分3个班 → 2,2,1)。

使用建议

  1. 自定义参数

    python 复制代码
    balanced_class_assignment(
        input_file="你的数据.xlsx",
        output_file="自定义结果.xlsx",
        num_classes=4,  # 设置班级数量
        score_bins=[0, 70, 85, 100]  # 自定义成绩分段
    )
  2. 验证均衡性

    • 检查输出文件中的 分班统计 Sheet,确保每个学校+成绩段的学生在不同班级间分布均衡。
相关推荐
cnxy1886 小时前
Python爬虫进阶:反爬虫策略与Selenium自动化完整指南
爬虫·python·selenium
用户8356290780517 小时前
Python 实现 Excel 条件格式自动化
后端·python
深蓝电商API7 小时前
Scrapy管道Pipeline深度解析:多方式数据持久化
爬虫·python·scrapy
噎住佩奇8 小时前
(Win11系统)搭建Python爬虫环境
爬虫·python
basketball6168 小时前
python 的对象序列化
开发语言·python
rgeshfgreh8 小时前
Python流程控制:从条件到循环实战
前端·数据库·python
luoluoal8 小时前
基于python大数据的电影市场预测分析(源码+文档)
python·mysql·django·毕业设计·源码
幻云20108 小时前
Python深度学习:从入门到实战
人工智能·python
Zoey的笔记本9 小时前
敏捷与稳定并行:Scrum看板+BPM工具选型指南
大数据·前端·数据库·python·低代码
开开心心就好10 小时前
图片格式转换工具,右键菜单一键转换简化
linux·运维·服务器·python·django·pdf·1024程序员节