AQS梳理
参考文档
《提升能力,涨薪可待》-Java并发之AQS全面详解AQS全称AbstractQueuedSynchronizer,即抽 - 掘金
独占模式下的AQS
独占模式下的AQS是不响应中断的,指的是加入到同步队列中的线程,如果因为中断而被唤醒的话,不会立即返回,并且抛出InterruptedException。而是再次去判断其前驱节点是否为head节点,决定是否争抢同步状态。如果其前驱节点不是head节点或者争抢同步状态失败,那么再次挂起。
独占模式获取资源-acquire方法
scss
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
图中尾节点插成功--->否后,有点问题,enq会二次判断为什么插入失败
独占模式获取资源-tryAcquire方法
tryAcquire
尝试以独占的方式获取资源,如果获取成功,则直接返回true
,否则直接返回false
,且具体实现由自定义AQS的同步器实现的。
arduino
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
在ReentrantLock
中的NonfairSync
中:
java
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread(); //获取当前线程
int c = getState();
if (c == 0) {
//用CAS的方式尝试获取锁
if (compareAndSetState(0, acquires)) {
//获取成功后,把自己设置成拥有锁的线程,实质就是:exclusiveOwnerThread = thread;这个exclusiveOwnerThread是AOS类的成员变量
setExclusiveOwnerThread(current);
return true;
}
}
//判断占用锁的线程是不是自己,如果是的话,可以再次获得锁,因为是可重入锁,并且重入锁时不需要用CAS方式修改状态值
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
独占模式获取资源-addWaiter方法
根据不同模式(Node.EXCLUSIVE
互斥模式、Node.SHARED
共享模式)创建结点并以CAS的方式将当前线程节点加入到不为空的等待队列的末尾(通过compareAndSetTail()
方法)。如果队列为空,通过enq(node)
方法初始化一个等待队列,并返回当前节点。
java
/**
* 参数
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* 返回值
* @return the new node
*/
private Node addWaiter(Node mode) {
//将当前线程以指定的模式创建节点node
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 获取当前同队列的尾节点
Node pred = tail;
//队列不为空,将新的node加入等待队列中
if (pred != null) {
node.prev = pred;
//CAS方式将当前节点尾插入队列中
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//当队列为empty或者CAS失败时会调用enq方法处理
enq(node);
return node;
}
其中,队列为empty,使用enq(node)
处理,将当前节点插入等待队列,如果队列为空,则初始化当前队列。所有操作都是CAS自旋的方式进行,直到成功加入队尾为止。
ini
private Node enq(final Node node) { //node里封装的是当前线程
//不断自旋
for (;;) {
Node t = tail;
//当前队列为empty
if (t == null) { // Must initialize
//完成队列初始化操作,头结点中不放数据,只是作为起始标记,lazy-load,在第一次用的时候new
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
//不断将当前节点使用CAS尾插入队列中直到成功为止
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
独占模式获取资源-acquireQueued方法
acquireQueued
用于已在队列中的线程以独占且不间断模式获取state状态,直到获取锁后返回。主要流程:
- 结点node进入队列尾部后,检查状态;
- 调用park()进入waiting状态,等待unpark()或interrupt()唤醒;
- 被唤醒后,是否获取到锁。如果获取到,head指向当前结点,并返回从入队到获取锁的整个过程中是否被中断过;如果没获取到,继续流程1
java
// 其中node封装的当前线程,arg多数情况下为1
final boolean acquireQueued(final Node node, int arg) {
//是否已获取锁的标志,默认为true 即为尚未
boolean failed = true;
try {
//等待中是否被中断过的标记
boolean interrupted = false;
for (;;) {
//获取前节点
final Node p = node.predecessor();
//如果当前节点已经成为头结点,尝试获取锁(tryAcquire)成功,然后返回
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//shouldParkAfterFailedAcquire根据对当前节点的前一个节点的状态进行判断,对当前节点做出不同的操作
//parkAndCheckInterrupt让线程进入等待状态,并检查当前线程是否被可以被中断
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
//将当前节点设置为取消状态;取消状态设置为1
if (failed)
cancelAcquire(node);
}
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
//如果前驱节点是SIGNAL的,那么就返回true,说明应该阻塞自己
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
//如果前去节点是CANCELD,说明前驱节点已经中断取消任务了,那么就应该再往前找
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
//当shouldParkAfterFailedAcquire返回true时会执行这个方法,阻塞当前线程
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
//将当前节点设置为取消状态;取消状态设置为1
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)
return;
node.thread = null;
// Skip cancelled predecessors
Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;
// predNext is the apparent node to unsplice. CASes below will
// fail if not, in which case, we lost race vs another cancel
// or signal, so no further action is necessary.
Node predNext = pred.next;
// Can use unconditional write instead of CAS here.
// After this atomic step, other Nodes can skip past us.
// Before, we are free of interference from other threads.
node.waitStatus = Node.CANCELLED;
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
独占模式释放资源-release方法
release方法是独占exclusive模式下线程释放共享资源的锁。它会调用tryRelease()释放同步资源,如果全部释放了同步状态为空闲(即state=0),当同步状态为空闲时,它会唤醒等待队列里的其他线程来获取资源。这也正是unlock()的语义,当然不仅仅只限于unlock().
java
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
独占模式释放资源-tryRelease方法
tryRelease()
跟tryAcquire()
一样实现都是由自定义定时器以独占exclusive模式实现的。**因为其是独占模式,不需要考虑线程安全的问题去释放共享资源,直接减掉相应量的资源即可(state-=arg)。**而且tryRelease()
的返回值代表着该线程是否已经完成资源的释放,因此在自定义同步器的tryRelease()
时,需要明确这条件,当已经彻底释放资源(state=0),要返回true,否则返回false。
arduino
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
以ReentrantLock为例:
ini
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
在ReentrantReadWriteLock中的实现:
scss
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
//减掉相应量的资源(state-=arg)
int nextc = getState() - releases;
//是否完全释放资源
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
在ReentrantLock中,先减状态,再判断是否是持有锁的线程,而在ReentrantReadWriteLock中是反过来的,为什么,有区别吗
独占模式释放资源-unparkSuccessor
unparkSuccessor
用unpark()唤醒等待队列中最前驱的那个未放弃线程,此线程并不一定是当前节点的next节点,而是下一个可以用来唤醒的线程,如果这个节点存在,调用unpark()方法唤醒。
ini
private void unparkSuccessor(Node node) {
//当前线程所在的结点node
int ws = node.waitStatus;
//置零当前线程所在的结点状态,允许失败
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
//找到下一个需要唤醒的结点
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
// 从后向前找
for (Node t = tail; t != null && t != node; t = t.prev)
//从这里可以看出,<=0的结点,都是还有效的结点
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
//唤醒
LockSupport.unpark(s.thread);
}
共享模式下的AQS
共享模式,当然是允许多个线程同时获取到同步状态,共享模式下的AQS也是不响应中断的.
很明显,我们可以将state的初始值设为N(N > 0),表示空闲。每当一个线程获取到同步状态时,就利用CAS操作让state减1,直到减到0表示非空闲,其他线程就只能加入到同步队列,进行等待。释放同步状态时,需要CAS操作,因为共享模式下,有多个线程能获取到同步状态。CountDownLatch、Semaphore正是基于此设计的。
共享模式获取资源-acquireShared方法
acquireShared
在共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。
arduino
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
- 先通过tryAcquireShared()尝试获取资源,成功则直接返回;
- 失败则通过doAcquireShared()中的park()进入等待队列,直到被unpark()/interrupt()并成功获取到资源才返回(整个等待过程也是忽略中断响应)。
共享模式获取资源-tryAcquireShared方法
tryAcquireShared()
跟独占模式获取资源方法一样实现都是由自定义同步器去实现。但AQS规范中已定义好tryAcquireShared()
的返回值:
- 负值代表获取失败;
- 0代表获取成功,但没有剩余资源;
- 正数表示获取成功,还有剩余资源,其他线程还可以去获取。
arduino
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
以CountDownLatch为例:
arduino
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
以Semaphore为例:
arduino
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
共享模式获取资源-doAcquireShared方法
没有获取到资源,执行doAcquireShared()
。
doAcquireShared()
用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,自己成功拿到相应量的资源后才返回。
scss
private void doAcquireShared(int arg) {
//加入队列尾部
final Node node = addWaiter(Node.SHARED);
//是否成功标志
boolean failed = true;
try {
//等待过程中是否被中断过的标志
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//获取前驱节点
if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
int r = tryAcquireShared(arg);//尝试获取资源
if (r >= 0) {//成功
setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
p.next = null; // help GC
if (interrupted)//如果等待过程中被打断过,此时将中断补上。
selfInterrupt();
failed = false;
return;
}
}
//判断状态,队列寻找一个适合位置,进入waiting状态,等着被unpark()或interrupt()
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private void setHeadAndPropagate(Node node, int propagate) {
//获取队列头节点
Node h = head;
//将当前节点设置为头节点
setHead(node);
//如果propagate>0表示该资源还可以被获取
//如果旧头节点为null或者旧头节点的状态小于0
//如果新头节点为null或者新头节点的状态小于0
if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) {
Node s = node.next;
//获取当前节点的后继节点,如果它为null或者它是共享节点,则唤醒头节点的后继节点
//读读共享,读写互斥,写写互斥
if (s == null || s.isShared()) {
//唤醒后继节点
doReleaseShared();
}
}
}
共享模式释放资源-releaseShared方法
releaseShared()
用于共享模式下线程释放共享资源,释放指定量的资源,如果成功释放且允许唤醒等待线程,它会唤醒等待队列里的其他线程来获取资源。
arduino
public final boolean releaseShared(int arg) {
//尝试释放资源
if (tryReleaseShared(arg)) {
//唤醒后继结点
doReleaseShared();
return true;
}
return false;
}
tryReleaseShared(arg)
以Semaphore
中的Sync
的NonfairSync
为例:
arduino
protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
}
共享模式释放资源-doReleaseShared方法
doReleaseShared()
主要用于唤醒后继节点线程,当state为正数,去获取剩余共享资源;当state=0时去获取共享资源。
ini
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
//唤醒后继
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue;
}
// head发生变化
if (h == head)
break;
}
}
//独占锁里提到了这个方法,传入的是头结点,唤醒的时候头结点的后继节点
private void unparkSuccessor(Node node) {}