Meta上新Llama 4,到底行不行?

这周AI圈被Meta的"深夜突袭"炸开了锅。

Llama 4家族带着三个新成员,直接杀回开源模型战场,连扎克伯格都亲自站台喊话:"我们要让全世界用上最好的AI!"

但别急着喊"王炸",先看看它到底强在哪。

这次Meta玩了个狠招:混合专家架构(MoE),把模型拆成一群"专业小分队",各司其职。比如Maverick模型,总参数4000亿,但每次只激活170亿------相当于用1/20的算力,干出接近GPT-4o的活儿。

说明Meta已经在liama中融入了deep seek的思想。

更绝的是多模态能力

Llama 4终于"长眼睛"了!上传一张工具图问"哪个适合修水管",它能圈出扳手;识别动漫角色也不在话下------虽然写代码还会翻车。

Llama 4系列支持多模态数据处理,可以处理文本、图像、视频等多种格式的内容。这在实际应用中非常有用,比如在内容创作、智能客服等领域,Llama 4都能发挥巨大的作用。

说到代码,网友实测结果有点分裂。

Llama 4 Maverick在竞技场榜单冲到1417分,碾压DeepSeek-V3,但面对经典"Python六边形测试",直接败下阵来。
Meta自己都承认:这货擅长聊天和推理,但代码还得再练练。

另一个杀手锏是千万级上下文窗口

Scout模型能塞下1000万token,相当于20小时视频或1.5万页书。

医学病历分析、超长代码库梳理,这些过去要切块处理的苦差事,现在能一口气搞定了。

但参数党先别嗨。

那个2万亿参数的"巨兽"Behemoth还在训练,Meta说它数学能力超GPT-4.5,可实测网友吐槽:"跑起来要3台512GB内存的Mac,成本比H100低,但速度慢24倍!"

价格倒是真香。

Maverick推理成本每百万token只要0.19美元,比GPT-4o便宜95%。

难怪谷歌CEO劈柴哥都发来贺电:"AI世界,从不平淡!"

所以回到最初的问题:Llama 4强不强?
答案很Meta:技术亮点炸裂,实战表现参差,生态野心拉满。

至于能不能坐稳"开源一哥"?等DeepSeek R2和GPT-5出招再说。

相关推荐
机器之心10 分钟前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
aneasystone本尊3 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒3 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊13 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三13 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯14 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet16 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算17 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心17 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar18 小时前
交叉熵:深度学习中最常用的损失函数
人工智能