Meta上新Llama 4,到底行不行?

这周AI圈被Meta的"深夜突袭"炸开了锅。

Llama 4家族带着三个新成员,直接杀回开源模型战场,连扎克伯格都亲自站台喊话:"我们要让全世界用上最好的AI!"

但别急着喊"王炸",先看看它到底强在哪。

这次Meta玩了个狠招:混合专家架构(MoE),把模型拆成一群"专业小分队",各司其职。比如Maverick模型,总参数4000亿,但每次只激活170亿------相当于用1/20的算力,干出接近GPT-4o的活儿。

说明Meta已经在liama中融入了deep seek的思想。

更绝的是多模态能力

Llama 4终于"长眼睛"了!上传一张工具图问"哪个适合修水管",它能圈出扳手;识别动漫角色也不在话下------虽然写代码还会翻车。

Llama 4系列支持多模态数据处理,可以处理文本、图像、视频等多种格式的内容。这在实际应用中非常有用,比如在内容创作、智能客服等领域,Llama 4都能发挥巨大的作用。

说到代码,网友实测结果有点分裂。

Llama 4 Maverick在竞技场榜单冲到1417分,碾压DeepSeek-V3,但面对经典"Python六边形测试",直接败下阵来。
Meta自己都承认:这货擅长聊天和推理,但代码还得再练练。

另一个杀手锏是千万级上下文窗口

Scout模型能塞下1000万token,相当于20小时视频或1.5万页书。

医学病历分析、超长代码库梳理,这些过去要切块处理的苦差事,现在能一口气搞定了。

但参数党先别嗨。

那个2万亿参数的"巨兽"Behemoth还在训练,Meta说它数学能力超GPT-4.5,可实测网友吐槽:"跑起来要3台512GB内存的Mac,成本比H100低,但速度慢24倍!"

价格倒是真香。

Maverick推理成本每百万token只要0.19美元,比GPT-4o便宜95%。

难怪谷歌CEO劈柴哥都发来贺电:"AI世界,从不平淡!"

所以回到最初的问题:Llama 4强不强?
答案很Meta:技术亮点炸裂,实战表现参差,生态野心拉满。

至于能不能坐稳"开源一哥"?等DeepSeek R2和GPT-5出招再说。

相关推荐
政安晨44 分钟前
【嵌入式人工智能产品开发实战】(二十)—— 政安晨:小智AI嵌入式终端代码解读:【B】小智AI嵌入式终端OTA升级功能深度解析
c++·人工智能·嵌入式·ota·小智ai·代码解读·ai聊天助手
pzx_00144 分钟前
【深度学习】自定义实现DataSet和DataLoader
开发语言·人工智能·python·深度学习·算法
努力向上的年轻人1 小时前
DeepSeek 与开源:肥沃土壤孕育 AI 硕果
人工智能·gitee·开源·deepseek·飞桨paddlepaddle·昇思mindspore
人工智能教学实践3 小时前
【深度学习】神经网络中,BatchNormalization(批量归一化)层
人工智能·深度学习·神经网络
起个破名想半天了7 小时前
Sklearn入门之datasets的基本用法
人工智能·python·机器学习·sklearn
微小冷7 小时前
微软出品的AI Toolkit,在VS Code中使用DeepSeek
人工智能·microsoft·插件·vs code·deepseek
IT古董7 小时前
【漫话机器学习系列】197.外核(Out of Core)
人工智能·机器学习
AIGC方案7 小时前
免费下载 | 2025天津大学:智能制造与数字孪生技术:面向可持续制造方向发展
人工智能·制造
訾博ZiBo8 小时前
AI日报 - 2025年4月15日
人工智能
yumuing8 小时前
AI 用电脑比你还溜?Agent S2 让复杂任务一键搞定
人工智能·gpt·llm