Meta上新Llama 4,到底行不行?

这周AI圈被Meta的"深夜突袭"炸开了锅。

Llama 4家族带着三个新成员,直接杀回开源模型战场,连扎克伯格都亲自站台喊话:"我们要让全世界用上最好的AI!"

但别急着喊"王炸",先看看它到底强在哪。

这次Meta玩了个狠招:混合专家架构(MoE),把模型拆成一群"专业小分队",各司其职。比如Maverick模型,总参数4000亿,但每次只激活170亿------相当于用1/20的算力,干出接近GPT-4o的活儿。

说明Meta已经在liama中融入了deep seek的思想。

更绝的是多模态能力

Llama 4终于"长眼睛"了!上传一张工具图问"哪个适合修水管",它能圈出扳手;识别动漫角色也不在话下------虽然写代码还会翻车。

Llama 4系列支持多模态数据处理,可以处理文本、图像、视频等多种格式的内容。这在实际应用中非常有用,比如在内容创作、智能客服等领域,Llama 4都能发挥巨大的作用。

说到代码,网友实测结果有点分裂。

Llama 4 Maverick在竞技场榜单冲到1417分,碾压DeepSeek-V3,但面对经典"Python六边形测试",直接败下阵来。
Meta自己都承认:这货擅长聊天和推理,但代码还得再练练。

另一个杀手锏是千万级上下文窗口

Scout模型能塞下1000万token,相当于20小时视频或1.5万页书。

医学病历分析、超长代码库梳理,这些过去要切块处理的苦差事,现在能一口气搞定了。

但参数党先别嗨。

那个2万亿参数的"巨兽"Behemoth还在训练,Meta说它数学能力超GPT-4.5,可实测网友吐槽:"跑起来要3台512GB内存的Mac,成本比H100低,但速度慢24倍!"

价格倒是真香。

Maverick推理成本每百万token只要0.19美元,比GPT-4o便宜95%。

难怪谷歌CEO劈柴哥都发来贺电:"AI世界,从不平淡!"

所以回到最初的问题:Llama 4强不强?
答案很Meta:技术亮点炸裂,实战表现参差,生态野心拉满。

至于能不能坐稳"开源一哥"?等DeepSeek R2和GPT-5出招再说。

相关推荐
m0_65010824几秒前
【论文精读】AVID:基于扩散模型的任意长度视频修复
人工智能·扩散模型·论文精读·视频修复·时序一致性·任意时长·结构引导
TYUT_xiaoming5 分钟前
ubuntu22.04 GPU环境安装mindspore
linux·人工智能·深度学习
海边夕阳200623 分钟前
【每天一个AI小知识】:什么是自监督学习?
人工智能·经验分享·学习
开发者工具分享25 分钟前
用户调研样本不具代表性时怎么办
人工智能·数据挖掘
稳稳C940 分钟前
02|Langgraph | 从入门到实战 | workflow与Agent
人工智能·langchain·agent·langgraph
聚梦小课堂40 分钟前
2025年11月4日 AI快讯
人工智能·新闻资讯·ai大事件
Dev7z42 分钟前
基于ResNet50和PyTorch的猫狗图像分类系统设计与实现
人工智能·pytorch·分类
lybugproducer43 分钟前
深度学习专题:模型训练的数据并行(三)
人工智能·深度学习·概率论
Gloria_niki1 小时前
图像分割深度学习学习总结
人工智能
武子康1 小时前
AI研究-118 具身智能 Mobile-ALOHA 解读:移动+双臂模仿学习的开源方案(含论文/代码/套件链接)
人工智能·深度学习·学习·机器学习·ai·开源·模仿学习