深度学习|注意力机制

一、注意力提示

随意:跟随主观意识,也就是指有意识。

注意力机制:考虑"随意线索",有一个注意力池化层,将会最终选择考虑到"随意线索"的那个值

二、注意力汇聚

这一部分也就是讲第一大点中"注意力汇聚"那个池化层如何实现池化操作。

1.非参注意力池化层

为什么叫"非参"呢?因为这里定义的池化层函数,函数中所用到的数据均来源于之前的变量,不需要学习任何参数,K是一个函数。
这里的query、key、value不懂是什么意思,好像和理解的函数对应不上,李沐没讲

1.1平均池化

这是最简单的池化方案,就是求解平均值,然后映射到value(值)上。

1.2NW核回归

就是K这个函数选取高斯核K(u),然后入代到上面的池化函数中。

2.参数注意力池化层

就是引入了一个可以学习的w作为参数,每次进行迭代。

二、注意力分数

1.基本介绍

就是说池化层的池化函数关键在于如何定义函数a,函数a就是注意力分数,softmax其实就是将其转换到0-1上,都弄成正的小数。

2.函数a的定义方式

2.1可加性的注意力

可加性的注意力,将函数a定义为上面所示的样子,其实就是将key和value合并起来,具体怎么个意思没太懂。

2.2Scaled Dot-Production Attention

三、自注意力

1.基本含义

将Xi当作key,value,query来提取序列特征。

2.位置编码

3.位置编码矩阵

这个矩阵P就是计算的出的矩阵X的位置信息编码矩阵。从图中可以看出,其实就是将位置信息加到了矩阵X输入上去。

4.绝对位置信息

对每个样本都给一个独一无二的位置信息,将这个位置信息加到原矩阵信息上去。

5.相对位置信息

四、Transformer

沐神说:老大的小孩过来看到BERT说,欸这不是芝麻街......

1.架构

2.多头注意力

相关推荐
加点油。。。。6 分钟前
【强化学习】——策略梯度方法
人工智能·机器学习·强化学习
2401_8414956415 分钟前
【自然语言处理】处理 GBK 编码汉字的算法设计
人工智能·python·自然语言处理·校验·文件读写·gbk编码与解码·批量过滤
怎么全是重名21 分钟前
Survey on semantic segmentation using deep learning techniques
图像处理·人工智能·深度学习·图像分割
老蒋新思维23 分钟前
创客匠人:工作流嵌入式智能体,重构知识变现的效率底层
大数据·服务器·人工智能·重构·创始人ip·创客匠人·知识变现
2501_9419820523 分钟前
展望:RPA与AI在企业微信自动化领域的未来融合趋势
人工智能·企业微信·rpa
小脉传媒GEO优化23 分钟前
GEO优化数据统计系统DeepAnaX系统详细介绍:开启AI数据智能分析新范式
人工智能·信息可视化
爱笑的眼睛1126 分钟前
MLflow Tracking API:超越实验记录,构建可复现的机器学习工作流
java·人工智能·python·ai
世岩清上27 分钟前
以技术预研为引擎,驱动脑机接口等未来产业研发与应用创新发展
人工智能·脑机接口·未来产业
YuforiaCode28 分钟前
黑马AI大模型神经网络与深度学习课程笔记(个人记录、仅供参考)
人工智能·笔记·深度学习