深度学习|注意力机制

一、注意力提示

随意:跟随主观意识,也就是指有意识。

注意力机制:考虑"随意线索",有一个注意力池化层,将会最终选择考虑到"随意线索"的那个值

二、注意力汇聚

这一部分也就是讲第一大点中"注意力汇聚"那个池化层如何实现池化操作。

1.非参注意力池化层

为什么叫"非参"呢?因为这里定义的池化层函数,函数中所用到的数据均来源于之前的变量,不需要学习任何参数,K是一个函数。
这里的query、key、value不懂是什么意思,好像和理解的函数对应不上,李沐没讲

1.1平均池化

这是最简单的池化方案,就是求解平均值,然后映射到value(值)上。

1.2NW核回归

就是K这个函数选取高斯核K(u),然后入代到上面的池化函数中。

2.参数注意力池化层

就是引入了一个可以学习的w作为参数,每次进行迭代。

二、注意力分数

1.基本介绍

就是说池化层的池化函数关键在于如何定义函数a,函数a就是注意力分数,softmax其实就是将其转换到0-1上,都弄成正的小数。

2.函数a的定义方式

2.1可加性的注意力

可加性的注意力,将函数a定义为上面所示的样子,其实就是将key和value合并起来,具体怎么个意思没太懂。

2.2Scaled Dot-Production Attention

三、自注意力

1.基本含义

将Xi当作key,value,query来提取序列特征。

2.位置编码

3.位置编码矩阵

这个矩阵P就是计算的出的矩阵X的位置信息编码矩阵。从图中可以看出,其实就是将位置信息加到了矩阵X输入上去。

4.绝对位置信息

对每个样本都给一个独一无二的位置信息,将这个位置信息加到原矩阵信息上去。

5.相对位置信息

四、Transformer

沐神说:老大的小孩过来看到BERT说,欸这不是芝麻街......

1.架构

2.多头注意力

相关推荐
董厂长3 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T6 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼6 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间6 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享6 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾7 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码7 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5897 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien7 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松8 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能