深度学习|注意力机制

一、注意力提示

随意:跟随主观意识,也就是指有意识。

注意力机制:考虑"随意线索",有一个注意力池化层,将会最终选择考虑到"随意线索"的那个值

二、注意力汇聚

这一部分也就是讲第一大点中"注意力汇聚"那个池化层如何实现池化操作。

1.非参注意力池化层

为什么叫"非参"呢?因为这里定义的池化层函数,函数中所用到的数据均来源于之前的变量,不需要学习任何参数,K是一个函数。
这里的query、key、value不懂是什么意思,好像和理解的函数对应不上,李沐没讲

1.1平均池化

这是最简单的池化方案,就是求解平均值,然后映射到value(值)上。

1.2NW核回归

就是K这个函数选取高斯核K(u),然后入代到上面的池化函数中。

2.参数注意力池化层

就是引入了一个可以学习的w作为参数,每次进行迭代。

二、注意力分数

1.基本介绍

就是说池化层的池化函数关键在于如何定义函数a,函数a就是注意力分数,softmax其实就是将其转换到0-1上,都弄成正的小数。

2.函数a的定义方式

2.1可加性的注意力

可加性的注意力,将函数a定义为上面所示的样子,其实就是将key和value合并起来,具体怎么个意思没太懂。

2.2Scaled Dot-Production Attention

三、自注意力

1.基本含义

将Xi当作key,value,query来提取序列特征。

2.位置编码

3.位置编码矩阵

这个矩阵P就是计算的出的矩阵X的位置信息编码矩阵。从图中可以看出,其实就是将位置信息加到了矩阵X输入上去。

4.绝对位置信息

对每个样本都给一个独一无二的位置信息,将这个位置信息加到原矩阵信息上去。

5.相对位置信息

四、Transformer

沐神说:老大的小孩过来看到BERT说,欸这不是芝麻街......

1.架构

2.多头注意力

相关推荐
TDengine (老段)1 小时前
TDengine C/C++ 连接器进阶指南
大数据·c语言·c++·人工智能·物联网·时序数据库·tdengine
lixzest1 小时前
PyTorch与Transformer的关系
人工智能·pytorch·transformer
檐下翻书1732 小时前
产品开发跨职能流程图在线生成工具
大数据·人工智能·架构·流程图·论文笔记
杜子不疼.2 小时前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
腾视科技3 小时前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
极新3 小时前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
Light608 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升8 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide8 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农8 小时前
码农的妇产科实习记录
android·java·人工智能