设计要求
通过内部ADC完成电位器RB2的输出电压检测,并显示在数码管上;
通过串口向PC端返回当前检测的电压值。
按键"S4"定义为发送按键,按下按键S4,串口向PC端发送当前检测的电压值。
串口发送格式:
U:1.25V\r\n
数码管显示格式如下图所示:

电压为1.25V(数码管最高位显示标识符U)
备注
单片机IRC振荡器频率设置为12MHz。
按键模式:BTN;扩展方式:IO模式。
串口波特率:9600。
代码
sys.h
cpp
#ifndef __SYS_H__
#define __SYS_H__
#include <STC15F2K60S2.H>
//sys.c
extern bit flag_send;
extern float Vrb2;
void init74hc138(unsigned char n);
void init();
//seg_key.c
void Key_Loop();
void Seg_Loop();
void ui();
//iic.c
float get_Vrb2();
#endif
main.c
cpp
#include "sys.h"
#include "stdio.h"
bit flag1=0;
bit flag2=0;
bit flag3=0;
void Timer0_Init(void) //100微秒@12.000MHz
{
AUXR &= 0x7F; //定时器时钟12T模式
TMOD &= 0xF0; //设置定时器模式
TL0 = 0x9C; //设置定时初始值
TH0 = 0xFF; //设置定时初始值
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
ET0 = 1; //使能定时器0中断
EA = 1;
}
void UartInit(void) //[email protected]
{
SCON = 0x50; //8位数据,可变波特率
AUXR |= 0x40; //定时器时钟1T模式
AUXR &= 0xFE; //串口1选择定时器1为波特率发生器
TMOD &= 0x0F; //设置定时器模式
TL1 = 0xC7; //设置定时初始值
TH1 = 0xFE; //设置定时初始值
ET1 = 0; //禁止定时器中断
TR1 = 1; //定时器1开始计时
ES = 1;
EA = 1;
}
char putchar(char ch){
SBUF=ch;
while(!TI);
TI=0;
return ch;
}
void main(){
init();
Timer0_Init();
UartInit();
while(1){
if(flag1){
flag1=0;
Seg_Loop();
}
if(flag2){
flag2=0;
Key_Loop();
}
if(flag3){
flag3=0;
Vrb2=get_Vrb2();
ui();
}
if(flag_send){
flag_send=0;
printf("U:%.2fV\r\n",Vrb2);
}
}
}
void Timer0_Isr(void) interrupt 1
{
static unsigned char count1=0;
static unsigned char count2=0;
static unsigned int count3=0;
count1++;count2++;count3++;
if(count1==2){
count1=0;
flag1=1;
}
if(count2==50){
count2=0;
flag2=1;
}
if(count3==1000){
count3=0;
flag3=1;
}
}
void uart() interrupt 4
{
if(RI){
RI=0;
}
}
sys.c
cpp
#include "sys.h"
bit flag_send=0;
float Vrb2;
void init74hc138(unsigned char n){
P2=(P2&0x1f)|(n<<5);
P2&=0x1f;
}
void init(){
P0=0x00;
init74hc138(5);
P0=0xff;
init74hc138(4);
}
seg_key.c
cpp
#include "sys.h"
code unsigned char Seg_Table[]={
0xc0,//0
0xf9,//1
0xa4,//2
0xb0,//3
0x99,//4
0x92,//5
0x82,//6
0xf8,//7
0x80,//8
0x90,//9
0xc1,//U 10
0xff //熄灭 11
};
unsigned char Seg_Buff[8]={11,11,11,11,11,11,11,11};
unsigned char keyval,keyold,keyup,keydown;
void Key_Loop(){
if(P33==0)keyval=4;
keydown=keyval&(keyold^keyval);
keyup=~keyval&(keyold^keyval);
if(keyval==4&&keyold!=4) flag_send=1;
keyold=keyval;
keyval=0;
}
void seg(unsigned char addr,num){
P0=0xff;
init74hc138(7);
P0=0x01<<addr;
init74hc138(6);
P0=Seg_Table[num];
if(addr==5) P0&=0x7f;
init74hc138(7);
}
void Seg_Loop(){
static unsigned char i=0;
seg(i,Seg_Buff[i]);
i++;
if(i==8) i=0;
}
void ui(){
Seg_Buff[7]=(int)(Vrb2*100+0.5)%10;
Seg_Buff[6]=(int)(Vrb2*10+0.05)%10;
Seg_Buff[5]=(int)(Vrb2+0.005)%10;
Seg_Buff[4]=11;
Seg_Buff[3]=11;
Seg_Buff[2]=11;
Seg_Buff[1]=11;
Seg_Buff[0]=10;
}
iic.c
cpp
#include "sys.h"
#include "intrins.h"
#define DELAY_TIME 10
sbit scl=P2^0;
sbit sda=P2^1;
static void I2C_Delay(unsigned char n)
{
do
{
_nop_();_nop_();_nop_();_nop_();_nop_();
_nop_();_nop_();_nop_();_nop_();_nop_();
_nop_();_nop_();_nop_();_nop_();_nop_();
}
while(n--);
}
//
void I2CStart(void)
{
sda = 1;
scl = 1;
I2C_Delay(DELAY_TIME);
sda = 0;
I2C_Delay(DELAY_TIME);
scl = 0;
}
//
void I2CStop(void)
{
sda = 0;
scl = 1;
I2C_Delay(DELAY_TIME);
sda = 1;
I2C_Delay(DELAY_TIME);
}
//
void I2CSendByte(unsigned char byt)
{
unsigned char i;
for(i=0; i<8; i++){
scl = 0;
I2C_Delay(DELAY_TIME);
if(byt & 0x80){
sda = 1;
}
else{
sda = 0;
}
I2C_Delay(DELAY_TIME);
scl = 1;
byt <<= 1;
I2C_Delay(DELAY_TIME);
}
scl = 0;
}
//
unsigned char I2CReceiveByte(void)
{
unsigned char da;
unsigned char i;
for(i=0;i<8;i++){
scl = 1;
I2C_Delay(DELAY_TIME);
da <<= 1;
if(sda)
da |= 0x01;
scl = 0;
I2C_Delay(DELAY_TIME);
}
return da;
}
//
unsigned char I2CWaitAck(void)
{
unsigned char ackbit;
scl = 1;
I2C_Delay(DELAY_TIME);
ackbit = sda;
scl = 0;
I2C_Delay(DELAY_TIME);
return ackbit;
}
//
void I2CSendAck(unsigned char ackbit)
{
scl = 0;
sda = ackbit;
I2C_Delay(DELAY_TIME);
scl = 1;
I2C_Delay(DELAY_TIME);
scl = 0;
sda = 1;
I2C_Delay(DELAY_TIME);
}
unsigned char adc(unsigned char addr){
unsigned char temp;
EA=0;
I2CStart();
I2CSendByte(0x90);
I2CWaitAck();
I2CSendByte(addr);
I2CWaitAck();
I2CStart();
I2CSendByte(0x91);
I2CWaitAck();
temp=I2CReceiveByte();
I2CSendAck(1);
I2CStop();
EA=1;
return temp;
}
float get_Vrb2(){
return (float)adc(3)/255*5.0;
}
测评结果
