[特殊字符] 第十三讲 | 地统计模拟与空间不确定性评估

📘 专栏:科研统计方法实战分享 | 地学/农学人的数据分析工具箱

✍️ 作者:平常心0715

🎯 关键词:地统计模拟、随机函数、空间不确定性、条件模拟、SGS、R语言


🧠 核心导语

在现实数据有限、空间异质性强的环境中,仅靠单一插值预测并不足以揭示背后的"不确定性"。此时,"地统计模拟"成为了空间研究不可或缺的工具!


💡 什么是地统计模拟?

与Kriging插值输出单一预测值不同,地统计模拟(Geostatistical Simulation)通过多次随机模拟,生成一系列可能的空间结果图,从而刻画不确定性,特别适合:

✅ 土壤污染风险图绘制

✅ 矿产资源储量估算

✅ 空间模型误差传播分析


🔍 模拟方式对比

方法 特点
SGS(Sequential Gaussian Simulation) 连续变量建模首选,模拟值更平滑
SIS(Sequential Indicator Simulation) 离散/分类型变量建模如土地利用等
Turning Bands 高频模拟,适合大数据场景

📦 R语言实战简例(以 gstat 包为例)

复制代码
library(gstat)
library(sp)

# 假设已有空间点数据 `dat`
coordinates(dat) <- ~x + y

# 拟合变异函数
vgm_mod <- variogram(value ~ 1, dat)
vgm_fit <- fit.variogram(vgm_mod, vgm("Sph"))

# 生成模拟网格
grd <- spsample(dat, n = 500, type = "regular")
gridded(grd) <- TRUE

# 进行SGS模拟(100 realizations)
sim_result <- krige(value ~ 1, dat, grd, model = vgm_fit, nmax = 20, nsim = 100)

📊 不确定性评估

你可以通过这些方式评估模拟结果:

  • 平均图(Mean Map):各位置的平均预测值;

  • 标准差图(Std. Dev. Map):反映空间预测的稳定性;

  • 95%置信区间图:量化置信程度。


✍️ 科研写作句式

"通过顺序高斯模拟方法构建100组空间预测结果,进一步量化研究区土壤污染分布的不确定性,结果显示热点区域的不确定性较高,需进一步实地调查。"


🧩 小结

✅ 插值只给一个答案,模拟提供多个"可能";

✅ SGS 是连续型变量建模利器;

✅ 不确定性分析帮助我们对空间结果有更科学判断!


📌 下一讲预告:空间异质性检验与地统计局部指标(LISA)应用

如果你觉得这篇文章有帮助,欢迎点赞 + 收藏!

我也会继续带来更多可直接实操的地理/农学统计方法系列分享~

相关推荐
Ai尚研修-贾莲2 小时前
Python语言在地球科学交叉领域中的应用——从数据可视化到常见数据分析方法的使用【实例操作】
python·信息可视化·数据分析·地球科学
lilye662 小时前
精益数据分析(53/126):双边市场模式指标全解析与运营策略深度探讨
数据挖掘·数据分析
Hell with it3 小时前
【bibtex4word】在Word中高效转换bib参考文献,Texlive环境安装bibtex4word插件
考研·学习方法
ʚɞ 短腿欧尼4 小时前
文本数据可视化
信息可视化·数据分析
BioRunYiXue4 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
安特尼7 小时前
招行数字金融挑战赛数据赛道赛题一
人工智能·python·机器学习·金融·数据分析
请你喝好果汁6419 小时前
TWASandGWAS中GBS filtering and GWAS(1)
信息可视化·数据挖掘·数据分析
Leo.yuan10 小时前
数据分析怎么做?高效的数据分析方法有哪些?
大数据·数据库·信息可视化·数据挖掘·数据分析
白杆杆红伞伞11 小时前
02_线性模型(回归分类模型)
分类·数据挖掘·回归
s_little_monster14 小时前
【Linux】socket网络编程之TCP
linux·运维·网络·笔记·学习·tcp/ip·学习方法