[特殊字符] 第十三讲 | 地统计模拟与空间不确定性评估

📘 专栏:科研统计方法实战分享 | 地学/农学人的数据分析工具箱

✍️ 作者:平常心0715

🎯 关键词:地统计模拟、随机函数、空间不确定性、条件模拟、SGS、R语言


🧠 核心导语

在现实数据有限、空间异质性强的环境中,仅靠单一插值预测并不足以揭示背后的"不确定性"。此时,"地统计模拟"成为了空间研究不可或缺的工具!


💡 什么是地统计模拟?

与Kriging插值输出单一预测值不同,地统计模拟(Geostatistical Simulation)通过多次随机模拟,生成一系列可能的空间结果图,从而刻画不确定性,特别适合:

✅ 土壤污染风险图绘制

✅ 矿产资源储量估算

✅ 空间模型误差传播分析


🔍 模拟方式对比

方法 特点
SGS(Sequential Gaussian Simulation) 连续变量建模首选,模拟值更平滑
SIS(Sequential Indicator Simulation) 离散/分类型变量建模如土地利用等
Turning Bands 高频模拟,适合大数据场景

📦 R语言实战简例(以 gstat 包为例)

复制代码
library(gstat)
library(sp)

# 假设已有空间点数据 `dat`
coordinates(dat) <- ~x + y

# 拟合变异函数
vgm_mod <- variogram(value ~ 1, dat)
vgm_fit <- fit.variogram(vgm_mod, vgm("Sph"))

# 生成模拟网格
grd <- spsample(dat, n = 500, type = "regular")
gridded(grd) <- TRUE

# 进行SGS模拟(100 realizations)
sim_result <- krige(value ~ 1, dat, grd, model = vgm_fit, nmax = 20, nsim = 100)

📊 不确定性评估

你可以通过这些方式评估模拟结果:

  • 平均图(Mean Map):各位置的平均预测值;

  • 标准差图(Std. Dev. Map):反映空间预测的稳定性;

  • 95%置信区间图:量化置信程度。


✍️ 科研写作句式

"通过顺序高斯模拟方法构建100组空间预测结果,进一步量化研究区土壤污染分布的不确定性,结果显示热点区域的不确定性较高,需进一步实地调查。"


🧩 小结

✅ 插值只给一个答案,模拟提供多个"可能";

✅ SGS 是连续型变量建模利器;

✅ 不确定性分析帮助我们对空间结果有更科学判断!


📌 下一讲预告:空间异质性检验与地统计局部指标(LISA)应用

如果你觉得这篇文章有帮助,欢迎点赞 + 收藏!

我也会继续带来更多可直接实操的地理/农学统计方法系列分享~

相关推荐
码界筑梦坊2 小时前
240-基于Python的医疗疾病数据可视化分析系统
开发语言·python·信息可视化·数据分析·毕业设计·echarts
Altair澳汰尔3 小时前
新闻速递丨Altair RapidMiner 数据分析和 AI 平台助力企业加速智能升级:扩展智能体 AI 及分析生态系统
人工智能·ai·数据分析·仿真·cae·rapidminer·数据自动化
图灵信徒3 小时前
R语言绘图与可视化第六章总结
python·数据挖掘·数据分析·r语言
元直数字电路验证4 小时前
感知机:乳腺癌分类实现 & K 均值聚类:从零实现
均值算法·分类·聚类
码界筑梦坊4 小时前
243-基于Django与VUE的笔记本电脑数据可视化分析系统
vue.js·python·信息可视化·数据分析·django·毕业设计·echarts
B站_计算机毕业设计之家5 小时前
大数据YOLOv8无人机目标检测跟踪识别系统 深度学习 PySide界面设计 大数据 ✅
大数据·python·深度学习·信息可视化·数据挖掘·数据分析·flask
武陵悭臾5 小时前
Python应用开发学习: Pygame 中实现数字水平靠右对齐和垂直靠底对齐
python·学习·程序人生·游戏·个人开发·学习方法·pygame
油泼辣子多加6 小时前
【实战】自然语言处理--长文本分类(3)HAN算法
算法·自然语言处理·分类
01100001乄夵6 小时前
第二课:时序逻辑入门-零基础FPGA闯关教程
经验分享·笔记·学习方法
赋范大模型技术社区7 小时前
LangChain 1.0 实战: NL2SQL 数据分析 Agent
数据分析·langchain·实战·agent·教程·nl2sql·langchain1.0