[特殊字符] 第十三讲 | 地统计模拟与空间不确定性评估

📘 专栏:科研统计方法实战分享 | 地学/农学人的数据分析工具箱

✍️ 作者:平常心0715

🎯 关键词:地统计模拟、随机函数、空间不确定性、条件模拟、SGS、R语言


🧠 核心导语

在现实数据有限、空间异质性强的环境中,仅靠单一插值预测并不足以揭示背后的"不确定性"。此时,"地统计模拟"成为了空间研究不可或缺的工具!


💡 什么是地统计模拟?

与Kriging插值输出单一预测值不同,地统计模拟(Geostatistical Simulation)通过多次随机模拟,生成一系列可能的空间结果图,从而刻画不确定性,特别适合:

✅ 土壤污染风险图绘制

✅ 矿产资源储量估算

✅ 空间模型误差传播分析


🔍 模拟方式对比

方法 特点
SGS(Sequential Gaussian Simulation) 连续变量建模首选,模拟值更平滑
SIS(Sequential Indicator Simulation) 离散/分类型变量建模如土地利用等
Turning Bands 高频模拟,适合大数据场景

📦 R语言实战简例(以 gstat 包为例)

复制代码
library(gstat)
library(sp)

# 假设已有空间点数据 `dat`
coordinates(dat) <- ~x + y

# 拟合变异函数
vgm_mod <- variogram(value ~ 1, dat)
vgm_fit <- fit.variogram(vgm_mod, vgm("Sph"))

# 生成模拟网格
grd <- spsample(dat, n = 500, type = "regular")
gridded(grd) <- TRUE

# 进行SGS模拟(100 realizations)
sim_result <- krige(value ~ 1, dat, grd, model = vgm_fit, nmax = 20, nsim = 100)

📊 不确定性评估

你可以通过这些方式评估模拟结果:

  • 平均图(Mean Map):各位置的平均预测值;

  • 标准差图(Std. Dev. Map):反映空间预测的稳定性;

  • 95%置信区间图:量化置信程度。


✍️ 科研写作句式

"通过顺序高斯模拟方法构建100组空间预测结果,进一步量化研究区土壤污染分布的不确定性,结果显示热点区域的不确定性较高,需进一步实地调查。"


🧩 小结

✅ 插值只给一个答案,模拟提供多个"可能";

✅ SGS 是连续型变量建模利器;

✅ 不确定性分析帮助我们对空间结果有更科学判断!


📌 下一讲预告:空间异质性检验与地统计局部指标(LISA)应用

如果你觉得这篇文章有帮助,欢迎点赞 + 收藏!

我也会继续带来更多可直接实操的地理/农学统计方法系列分享~

相关推荐
点金石游戏出海7 小时前
玩家为何退出、不付费?读懂这些关键的“行为数据”,解锁增长密码!
游戏·数据分析·用户分析·游戏运营
咚咚王8 小时前
人工智能之数据分析 Matplotlib:第四章 图形类型
人工智能·数据分析
咚咚王者9 小时前
人工智能之数据分析 Matplotlib:第三章 基本属性
人工智能·数据分析·matplotlib
lkbhua莱克瓦249 小时前
集合进阶8——Stream流
java·开发语言·笔记·github·stream流·学习方法·集合
人大博士的交易之路10 小时前
龙虎榜——20251128
大数据·数学建模·数据挖掘·数据分析·缠论·龙虎榜·道琼斯结构
空影星11 小时前
轻量日记神器RedNotebook,高效记录每一天
python·数据挖掘·数据分析·音视频
databook11 小时前
告别盲人摸象,数据分析的抽样方法总结
后端·python·数据分析
咚咚王者21 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者21 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy
陈辛chenxin1 天前
【大数据技术07】分类和聚类算法
神经网络·决策树·分类·聚类·分类算法