MapReduce实验:分析和编写WordCount程序(对文本进行查重)

实验环境:已经部署好的Hadoop环境 Hadoop安装、配置与管理_centos hadoop安装-CSDN博客

实验目的:对输入文件统计单词频率

实验过程:

1、准备文件

test.txt文件,它是你需要准备的原始数据文件,存放在你的 Linux 系统(运行 Hadoop 命令的机器)本地磁盘上的某个位置。文件内容可以是任意文本数据,比如一些段落、句子、单词等,以便进行词频统计(wordcount)等操作。(里面可以随便复制一些相同的单词,可以进行文件内容查重统计)

新建一个测试数据文件test.txt ,上传到Linux虚拟机的/sample/test.txt目录(若没有目录则创建一个)

2、启动 Hadoop 服务

start-dfs.sh

start-yarn.sh

3、上传数据到 HDFS

在HDFS上创建目录,并将待处理的数据文件上传到该目录:

hdfs dfs -mkdir -p /sample/input

hdfs dfs -mkdir -p /sample/output

hdfs dfs -put /sample/test.txt /sample/input //将txt文件保存在/sample/input目录里

4、进行测试

先查找Hadoop-mapreduce-examples-2.7.3.jar解压包的位置

find / -name "hadoop-mapreduce-examples-2.7.3.jar"


hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /sample/input/test.txt /sample/test-result

/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar //解压包的位置

/sample/input/test.txt //txt在hdfs里面的位置

/sample/test-result //文件查重之后生成文件所放的目录

5、结果验证

查找以 part- 开头的结果文件: hdfs dfs -ls /sample/test-result

使用命令查看文件得到单词的词频统计结果:

hdfs dfs -cat /sample/test-result/part-r-00000

每行的格式是 "单词 词频",中间以制表符分隔。这个结果是 MapReduce 作业成功执行后,对输入文本中单词出现次数的统计汇总。

相关推荐
每日新鲜事10 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
AI架构全栈开发实战笔记10 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化
AI架构全栈开发实战笔记10 小时前
Eureka 对大数据领域服务依赖关系的梳理
大数据·ai·云原生·eureka
自挂东南枝�11 小时前
政企舆情大数据服务平台的“全域洞察中枢”
大数据
weisian15111 小时前
Elasticsearch-1--什么是ES?
大数据·elasticsearch·搜索引擎
LaughingZhu11 小时前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
玄同76512 小时前
Git常用命令指南
大数据·git·elasticsearch·gitee·github·团队开发·远程工作
瑞华丽PLM13 小时前
电子行业国产PLM系统功能差异化对比表
大数据·plm·国产plm·瑞华丽plm·瑞华丽
深圳市恒星物联科技有限公司14 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能