GPT - 2 文本生成任务全流程

数据集下载

数据预处理

python 复制代码
import json
import pandas as pd

all_data = []

with open("part-00018.jsonl",encoding="utf-8") as f:
    for line in f.readlines():
        data = json.loads(line)
        all_data.append(data["text"])

batch_size = 10000

for i in range(0,len(all_data),batch_size):
    begin = i
    end = i + batch_size

    df = pd.DataFrame({"content":all_data[begin:end]})
    df.to_csv(f"./data/{i}.csv",index=False)

GPT-2 模型的配置

这部分代码的功能是初始化一个 GPT-2 模型的配置对象 GPT2Config,该对象将用于后续创建 GPT-2 模型实例。

方式一:在线配置

复制代码
config = GPT2Config.from_pretrained("openai-community/gpt2",
                                    vocab_size=len(tokenizer),
                                    n_ctx=context_length,
                                    bos_token_id = tokenizer.bos_token_id,
                                    eos_token_id = tokenizer.eos_token_id,
                                    )

方式二:复制官网配置文件到本地

创建本地文件夹

复制官网配置文件到本地 https://huggingface.co/openai-community/gpt2/blob/main/config.json

python 复制代码
{
  "activation_function": "gelu_new",
  "architectures": [
    "GPT2LMHeadModel"
  ],
  "attn_pdrop": 0.1,
  "bos_token_id": 50256,
  "embd_pdrop": 0.1,
  "eos_token_id": 50256,
  "initializer_range": 0.02,
  "layer_norm_epsilon": 1e-05,
  "model_type": "gpt2",
  "n_ctx": 1024,
  "n_embd": 768,
  "n_head": 12,
  "n_layer": 12,
  "n_positions": 1024,
  "resid_pdrop": 0.1,
  "summary_activation": null,
  "summary_first_dropout": 0.1,
  "summary_proj_to_labels": true,
  "summary_type": "cls_index",
  "summary_use_proj": true,
  "task_specific_params": {
    "text-generation": {
      "do_sample": true,
      "max_length": 50
    }
  },
  "vocab_size": 50257
}
复制代码
config = GPT2Config.from_pretrained("config/gpt2.config",
                                    vocab_size=len(tokenizer),
                                    n_ctx=context_length,
                                    bos_token_id = tokenizer.bos_token_id,
                                    eos_token_id = tokenizer.eos_token_id,
                                    )

模型映射、模型训练

python 复制代码
from glob import glob
import os
from torch.utils.data import Dataset
from datasets import load_dataset
import random
from transformers import BertTokenizerFast
from transformers import GPT2Config
from transformers import GPT2LMHeadModel
from transformers import DataCollatorForLanguageModeling
from transformers import Trainer,TrainingArguments

def tokenize(element):
    outputs = tokenizer(element["content"],truncation=True,max_length=context_length,return_overflowing_tokens=True,return_length=True)

    input_batch = []

    for length,input_ids in zip(outputs["length"],outputs["input_ids"]):

        if length == context_length:
            input_batch.append(input_ids)

    return {"input_ids":input_batch}

if __name__ == "__main__":
    random.seed(1002)
    test_rate = 0.2
    context_length = 128

    all_files = glob(pathname=os.path.join("data","*"))

    test_file_list = random.sample(all_files,int(len(all_files)*test_rate))
    train_file_list = [i for i in all_files if i not in test_file_list]

    raw_datasets = load_dataset("csv",data_files={"train":train_file_list,"vaild":test_file_list},cache_dir="cache_data")


    tokenizer = BertTokenizerFast.from_pretrained("D:/bert-base-chinese")
    tokenizer.add_special_tokens({"bos_token":"[begin]","eos_token":"[end]"})

    tokenize_datasets = raw_datasets.map(tokenize,batched=True,remove_columns=raw_datasets["train"].column_names)

    config = GPT2Config.from_pretrained("config/gpt2.config",
                                        vocab_size=len(tokenizer),
                                        n_ctx=context_length,
                                        bos_token_id = tokenizer.bos_token_id,
                                        eos_token_id = tokenizer.eos_token_id,
                                        )

    model = GPT2LMHeadModel(config)
    model_size = sum([ t.numel() for t in model.parameters()])
    print(f"model_size: {model_size/1000/1000} M")

    data_collator = DataCollatorForLanguageModeling(tokenizer,mlm=False)

    args = TrainingArguments(
        learning_rate=1e-5,
        num_train_epochs=100,
        per_device_train_batch_size=10,
        per_device_eval_batch_size=10,
        eval_steps=2000,
        logging_steps=2000,
        gradient_accumulation_steps=5,
        weight_decay=0.1,
        warmup_steps=1000,
        lr_scheduler_type="cosine",
        save_steps=100,
        output_dir="model_output",
        fp16=True,
    )

    trianer = Trainer(
        model=model,
        args=args,
        tokenizer=tokenizer,
        data_collator=data_collator,
        train_dataset=tokenize_datasets["train"],
        eval_dataset=tokenize_datasets["vaild"]
    )

    trianer.train()

文本生成交互界面

python 复制代码
from transformers import GPT2LMHeadModel,BertTokenizerFast
import os

tokenizer = BertTokenizerFast.from_pretrained("bert-base-chinese")
model_path = os.path.join("model_output","checkpoint-100")

model = GPT2LMHeadModel.from_pretrained(model_path,pad_token_id=tokenizer.pad_token_id)
model = model.to("cuda")

while True:
    input_text = input("请输入:")
    input_ids = tokenizer.encode(input_text,return_tensors="pt")
    input_ids = input_ids.to("cuda")

    output = model.generate(input_ids,max_length=400,num_beams=5,repetition_penalty=1,early_stopping=True)

    output_text = tokenizer.decode(output[0],skip_special_tokens=True)
    print(f"输出:{output_text}")
相关推荐
夏子曦6 分钟前
AI——认知建模工具:ACT-R
人工智能·机器学习·ai
studyer_domi19 分钟前
Matlab 基于Hough变换的人眼虹膜定位方法
人工智能·计算机视觉
qq_4369621829 分钟前
AI数据分析中的伪需求场景:现状、挑战与突破路径
人工智能·数据挖掘·数据分析·ai数据分析
layneyao1 小时前
AI与计算机视觉(CV):目标检测与图像分割的最新进展
人工智能·目标检测·计算机视觉
Clocky71 小时前
机器学习-数据集划分和特征工程
人工智能·深度学习·机器学习
机器学习之心HML1 小时前
Transformer编码器+SHAP分析,模型可解释创新表达!
人工智能·深度学习·transformer
多巴胺与内啡肽.1 小时前
OpenCV进阶操作:角点检测
人工智能·opencv·计算机视觉
鸿蒙布道师1 小时前
ChatGPT深度研究功能革新:GitHub直连与强化微调
人工智能·深度学习·神经网络·自然语言处理·chatgpt·数据挖掘·github
小刘私坊1 小时前
人工智能与生命科学的深度融合:破解生物医学难题,引领未来科技革命
人工智能·科技