Spark-SQL核心编程:DataFrame、DataSet与RDD深度解析

在大数据处理领域,Spark-SQL是极为重要的工具。今天就来深入探讨Spark-SQL中DataFrame、DataSet和RDD这三个关键数据结构。

Spark-SQL的前身是Shark,它摆脱了对Hive的过度依赖,在数据兼容、性能优化和组件扩展上有显著提升。DataFrame是基于RDD的分布式数据集,类似二维表格且带有schema元信息,这让Spark SQL能优化执行,性能优于RDD,其API也更友好。创建DataFrame的方式多样,可从数据源、RDD或Hive Table获取数据。使用DSL语法操作DataFrame很方便,像查看Schema、筛选数据、分组统计都轻松实现。

DataSet是DataFrame的扩展,具有强类型特性,用样例类定义数据结构,兼具RDD的强类型和Spark SQL优化执行引擎的优势。可以通过样例类序列或基本类型序列创建DataSet,但实际中更多从RDD转换得到。

RDD是Spark最早的数据抽象,一般和Spark MLlib一起使用,不过它不支持SparkSQL操作。DataFrame和DataSet支持SparkSQL操作,还能方便地保存数据,像保存为带表头的CSV文件。

三者都是分布式弹性数据集,有惰性机制、共同函数,会自动缓存运算且都有分区概念。它们之间可以相互转换,RDD可通过样例类转换为DataSet或DataFrame,DataSet和DataFrame也能相互转换。在未来,DataSet有可能逐步取代RDD和DataFrame成为唯一的API接口。掌握这三者的特性和使用方法,能更高效地进行大数据处理开发,希望这篇总结对大家有所帮助。

相关推荐
大数据CLUB36 分钟前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐3 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
孟意昶6 小时前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
智海观潮10 小时前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark
盛源_0112 小时前
hadoop的api操作对象存储
hdfs·spark
欧阳方超14 小时前
Spark(1):不依赖Hadoop搭建Spark环境
大数据·hadoop·spark
Light6015 小时前
领码SPARK融合平台 · TS × Java 双向契约 —— 性能与治理篇|缓存分段与版本秩序
低代码·缓存·spark
孟意昶16 小时前
Spark专题-第一部分:Spark 核心概述(1)-Spark 是什么?
大数据·分布式·spark
哈哈很哈哈1 天前
Spark 核心 RDD详解
大数据·分布式·spark·scala