Spark-SQL核心编程:DataFrame、DataSet与RDD深度解析

在大数据处理领域,Spark-SQL是极为重要的工具。今天就来深入探讨Spark-SQL中DataFrame、DataSet和RDD这三个关键数据结构。

Spark-SQL的前身是Shark,它摆脱了对Hive的过度依赖,在数据兼容、性能优化和组件扩展上有显著提升。DataFrame是基于RDD的分布式数据集,类似二维表格且带有schema元信息,这让Spark SQL能优化执行,性能优于RDD,其API也更友好。创建DataFrame的方式多样,可从数据源、RDD或Hive Table获取数据。使用DSL语法操作DataFrame很方便,像查看Schema、筛选数据、分组统计都轻松实现。

DataSet是DataFrame的扩展,具有强类型特性,用样例类定义数据结构,兼具RDD的强类型和Spark SQL优化执行引擎的优势。可以通过样例类序列或基本类型序列创建DataSet,但实际中更多从RDD转换得到。

RDD是Spark最早的数据抽象,一般和Spark MLlib一起使用,不过它不支持SparkSQL操作。DataFrame和DataSet支持SparkSQL操作,还能方便地保存数据,像保存为带表头的CSV文件。

三者都是分布式弹性数据集,有惰性机制、共同函数,会自动缓存运算且都有分区概念。它们之间可以相互转换,RDD可通过样例类转换为DataSet或DataFrame,DataSet和DataFrame也能相互转换。在未来,DataSet有可能逐步取代RDD和DataFrame成为唯一的API接口。掌握这三者的特性和使用方法,能更高效地进行大数据处理开发,希望这篇总结对大家有所帮助。

相关推荐
2501_938780287 小时前
《不止 MapReduce:Hadoop 与 Spark 的计算模型差异及适用场景分析》
hadoop·spark·mapreduce
2501_9387739919 小时前
《Hadoop 与 Spark 融合路径:基于 Spark on YARN 的部署与调优技巧》
大数据·hadoop·spark
2501_938782092 天前
《大数据框架选型指南:Hadoop 与 Spark 的性能、成本与扩展性对比》
大数据·hadoop·spark
北邮-吴怀玉2 天前
6.1.1.3 大数据方法论与实践指南-SparkStreaming 任务优化实践
大数据·flink·spark·数据治理
Q26433650232 天前
【有源码】基于Hadoop与Spark的时尚精品店数据分析与可视化系统-基于多维度分析的零售时尚销售数据挖掘与可视化研究
大数据·hadoop·机器学习·数据挖掘·数据分析·spark·毕业设计
北邮-吴怀玉2 天前
6.1.1.1 大数据方法论与实践指南-Spark/Flink 任务开发规范
大数据·flink·spark
LDG_AGI2 天前
【推荐系统】深度学习训练框架(一):深入剖析Spark集群计算中Master与Pytorch分布式计算Master的区别
人工智能·深度学习·算法·机器学习·spark
LDG_AGI2 天前
【推荐系统】深度学习训练框架(二):深入剖析Spark Cluster模式下DDP网络配置解析
大数据·网络·人工智能·深度学习·算法·机器学习·spark
丸卜3 天前
spark-RDD期中
spark
北邮-吴怀玉3 天前
6.1.1.2 大数据方法论与实践指南-实时任务(spark/flink)任务的 cicd 解决方案
大数据·flink·spark