【扩散模型连载 · 第 2 期】逆向扩散建模与神经网络的角色

上期回顾

我们在第 1 期中介绍了 正向扩散过程(Forward Process),并用 CIFAR-10 图像演示了加噪过程:

正向过程是固定的,无需训练,但我们感兴趣的是:如何从纯噪声一步步"还原"出真实图像?

这就引出了今天的重点:

一、逆向扩散过程(Reverse Process)

正向扩散会将图像逐步变为噪声:

我们想做的是逆过程:

这个逆向过程也被建模成一个马尔可夫链

目标:用神经网络 θ学习出这个高斯分布的参数.

二、逆向过程的难点

相比于前向过程,逆过程存在两个挑战:

  1. 真实的 p(x_t−1∣xt)无法直接获得

    因为我们没有真实的 x_t−1​ 分布,只知道正向过程中加了噪声。

  2. 训练目标不好设计

    我们不能直接监督学习目标分布,只能间接构造损失。

三、DDPM 的关键设计:噪声预测损失

作者提出了一个巧妙的思路:

既然我们知道在正向过程中,x_t 是通过在 x_0上添加噪声得到的:

那么我们可以训练神经网络 ϵ_θ(x_t,t) 去预测加进去的噪声 ϵ

四、训练损失函数

使用 L2 loss 去预测噪声:

含义:

  • 随机采样一个时间步 t

  • 加噪得到 x_t

  • 训练网络 ϵ_θ​ 尽可能预测正确的噪声

📌 神奇之处:这个损失等价于对变分下界的优化(DDPM 论文中严格推导)

相关推荐
政安晨2 小时前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者9 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗9 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信10 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_8362358610 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活