【扩散模型连载 · 第 2 期】逆向扩散建模与神经网络的角色

上期回顾

我们在第 1 期中介绍了 正向扩散过程(Forward Process),并用 CIFAR-10 图像演示了加噪过程:

正向过程是固定的,无需训练,但我们感兴趣的是:如何从纯噪声一步步"还原"出真实图像?

这就引出了今天的重点:

一、逆向扩散过程(Reverse Process)

正向扩散会将图像逐步变为噪声:

我们想做的是逆过程:

这个逆向过程也被建模成一个马尔可夫链

目标:用神经网络 θ学习出这个高斯分布的参数.

二、逆向过程的难点

相比于前向过程,逆过程存在两个挑战:

  1. 真实的 p(x_t−1∣xt)无法直接获得

    因为我们没有真实的 x_t−1​ 分布,只知道正向过程中加了噪声。

  2. 训练目标不好设计

    我们不能直接监督学习目标分布,只能间接构造损失。

三、DDPM 的关键设计:噪声预测损失

作者提出了一个巧妙的思路:

既然我们知道在正向过程中,x_t 是通过在 x_0上添加噪声得到的:

那么我们可以训练神经网络 ϵ_θ(x_t,t) 去预测加进去的噪声 ϵ

四、训练损失函数

使用 L2 loss 去预测噪声:

含义:

  • 随机采样一个时间步 t

  • 加噪得到 x_t

  • 训练网络 ϵ_θ​ 尽可能预测正确的噪声

📌 神奇之处:这个损失等价于对变分下界的优化(DDPM 论文中严格推导)

相关推荐
一个热爱生活的普通人11 分钟前
不需要apikey认证的大模型api如何在cline上配置(结尾附带cline系统提示词)
人工智能·aigc
Xyz_Overlord11 分钟前
机器学习----决策树
人工智能·决策树·机器学习
codegarfield23 分钟前
神经网络中的梯度消失与梯度爆炸
人工智能·神经网络·resnet·梯度
carpell25 分钟前
【语义分割专栏】2:U-net原理篇(由浅入深)
人工智能·深度学习·计算机视觉·语义分割
Black_Rock_br32 分钟前
迈向分布式智能:解析MCP到A2A的通信范式迁移
人工智能
Ann1 小时前
function call到MCP技术演进
人工智能·openai·mcp
C66668881 小时前
TCP/IP协议
开发语言·tcp/ip·计算机视觉·信息与通信
非凡ghost1 小时前
ChatOn:智能AI聊天助手,开启高效互动新时代
android·人工智能·智能手机·生活·软件需求
一颗小树x1 小时前
【机器人】具身导航 VLN 最新论文汇总 | Vision-and-Language Navigation
人工智能·论文·综述·具身导航·对象导航
红衣小蛇妖2 小时前
神经网络-Day42
人工智能·深度学习·神经网络