【扩散模型连载 · 第 2 期】逆向扩散建模与神经网络的角色

上期回顾

我们在第 1 期中介绍了 正向扩散过程(Forward Process),并用 CIFAR-10 图像演示了加噪过程:

正向过程是固定的,无需训练,但我们感兴趣的是:如何从纯噪声一步步"还原"出真实图像?

这就引出了今天的重点:

一、逆向扩散过程(Reverse Process)

正向扩散会将图像逐步变为噪声:

我们想做的是逆过程:

这个逆向过程也被建模成一个马尔可夫链

目标:用神经网络 θ学习出这个高斯分布的参数.

二、逆向过程的难点

相比于前向过程,逆过程存在两个挑战:

  1. 真实的 p(x_t−1∣xt)无法直接获得

    因为我们没有真实的 x_t−1​ 分布,只知道正向过程中加了噪声。

  2. 训练目标不好设计

    我们不能直接监督学习目标分布,只能间接构造损失。

三、DDPM 的关键设计:噪声预测损失

作者提出了一个巧妙的思路:

既然我们知道在正向过程中,x_t 是通过在 x_0上添加噪声得到的:

那么我们可以训练神经网络 ϵ_θ(x_t,t) 去预测加进去的噪声 ϵ

四、训练损失函数

使用 L2 loss 去预测噪声:

含义:

  • 随机采样一个时间步 t

  • 加噪得到 x_t

  • 训练网络 ϵ_θ​ 尽可能预测正确的噪声

📌 神奇之处:这个损失等价于对变分下界的优化(DDPM 论文中严格推导)

相关推荐
cnbestec1 小时前
3D 视觉赋能仓储精准高效:ID Logistics 与 Stereolabs 的创新合作之旅
人工智能·3d
AORO_BEIDOU1 小时前
遨游科普:三防平板除了三防特性?还能实现什么功能?
大数据·人工智能·科技·智能手机·电脑·信息与通信
AI大模型顾潇2 小时前
[特殊字符] AI 大模型的 Prompt Engineering 原理:从基础到源码实践
运维·人工智能·spring·自然语言处理·自动化·大模型·prompt
C灿灿数模2 小时前
2025mathorcup妈妈杯数学建模挑战赛C题:汽车风阻预测,详细思路,模型,代码更新中
人工智能·算法·ffmpeg
Tester_孙大壮2 小时前
OCR技术与视觉模型技术的区别、应用及展望
人工智能·ai·ocr
果冻人工智能2 小时前
关于AI:记忆、身份和锁死
人工智能
小研学术2 小时前
AI文生图工具推荐
人工智能·ai·文生图·多模态·deepseek·ai生图
黎明沐白2 小时前
Pytorch Hook 技巧
人工智能·pytorch·python
Lilith的AI学习日记2 小时前
n8n 中文系列教程_02. 自动化平台深度解析:核心优势与场景适配指南
大数据·人工智能·aigc·ai编程
豆豆2 小时前
day28 学习笔记
图像处理·笔记·opencv·学习·计算机视觉