【扩散模型连载 · 第 2 期】逆向扩散建模与神经网络的角色

上期回顾

我们在第 1 期中介绍了 正向扩散过程(Forward Process),并用 CIFAR-10 图像演示了加噪过程:

正向过程是固定的,无需训练,但我们感兴趣的是:如何从纯噪声一步步"还原"出真实图像?

这就引出了今天的重点:

一、逆向扩散过程(Reverse Process)

正向扩散会将图像逐步变为噪声:

我们想做的是逆过程:

这个逆向过程也被建模成一个马尔可夫链

目标:用神经网络 θ学习出这个高斯分布的参数.

二、逆向过程的难点

相比于前向过程,逆过程存在两个挑战:

  1. 真实的 p(x_t−1∣xt)无法直接获得

    因为我们没有真实的 x_t−1​ 分布,只知道正向过程中加了噪声。

  2. 训练目标不好设计

    我们不能直接监督学习目标分布,只能间接构造损失。

三、DDPM 的关键设计:噪声预测损失

作者提出了一个巧妙的思路:

既然我们知道在正向过程中,x_t 是通过在 x_0上添加噪声得到的:

那么我们可以训练神经网络 ϵ_θ(x_t,t) 去预测加进去的噪声 ϵ

四、训练损失函数

使用 L2 loss 去预测噪声:

含义:

  • 随机采样一个时间步 t

  • 加噪得到 x_t

  • 训练网络 ϵ_θ​ 尽可能预测正确的噪声

📌 神奇之处:这个损失等价于对变分下界的优化(DDPM 论文中严格推导)

相关推荐
Akamai中国5 分钟前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·云服务·云存储
雨大王51210 分钟前
汽车AI智能体矩阵:驱动行业智能化变革的新范式
人工智能·汽车
SmartRadio22 分钟前
在CH585M代码中如何精细化配置PMU(电源管理单元)和RAM保留
linux·c语言·开发语言·人工智能·单片机·嵌入式硬件·lora
旦莫28 分钟前
Pytest教程:Pytest与主流测试框架对比
人工智能·python·pytest
●VON32 分钟前
从模型到价值:MLOps 工程体系全景解析
人工智能·学习·制造·von
智慧地球(AI·Earth)1 小时前
Codex配置问题解析:wire_api格式不匹配导致的“Reconnecting...”循环
开发语言·人工智能·vscode·codex·claude code
GISer_Jing1 小时前
AI:多智能体协作与记忆管理
人工智能·设计模式·aigc
qq_411262421 小时前
纯图像传感器(只出像素),还是 Himax WiseEye/WE1/WE-I Plus 这类带处理器、能在端侧跑模型并输出“metadata”的模块
人工智能·嵌入式硬件·esp32·四博智联
InfiSight智睿视界1 小时前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
Toky丶1 小时前
【文献阅读】BitNet Distillation
人工智能