【扩散模型连载 · 第 2 期】逆向扩散建模与神经网络的角色

上期回顾

我们在第 1 期中介绍了 正向扩散过程(Forward Process),并用 CIFAR-10 图像演示了加噪过程:

正向过程是固定的,无需训练,但我们感兴趣的是:如何从纯噪声一步步"还原"出真实图像?

这就引出了今天的重点:

一、逆向扩散过程(Reverse Process)

正向扩散会将图像逐步变为噪声:

我们想做的是逆过程:

这个逆向过程也被建模成一个马尔可夫链

目标:用神经网络 θ学习出这个高斯分布的参数.

二、逆向过程的难点

相比于前向过程,逆过程存在两个挑战:

  1. 真实的 p(x_t−1∣xt)无法直接获得

    因为我们没有真实的 x_t−1​ 分布,只知道正向过程中加了噪声。

  2. 训练目标不好设计

    我们不能直接监督学习目标分布,只能间接构造损失。

三、DDPM 的关键设计:噪声预测损失

作者提出了一个巧妙的思路:

既然我们知道在正向过程中,x_t 是通过在 x_0上添加噪声得到的:

那么我们可以训练神经网络 ϵ_θ(x_t,t) 去预测加进去的噪声 ϵ

四、训练损失函数

使用 L2 loss 去预测噪声:

含义:

  • 随机采样一个时间步 t

  • 加噪得到 x_t

  • 训练网络 ϵ_θ​ 尽可能预测正确的噪声

📌 神奇之处:这个损失等价于对变分下界的优化(DDPM 论文中严格推导)

相关推荐
新加坡内哥谈技术4 分钟前
Claude Code 的“AI优先”
人工智能
豆芽8198 分钟前
模糊控制Fuzzy Control
人工智能·算法·模糊控制
Sui_Network17 分钟前
Sui Stack Messaging SDK:为 Web3 打造可编程通信
大数据·人工智能·科技·web3·去中心化·区块链
金井PRATHAMA20 分钟前
GraphRAG对自然语言处理中深层语义分析的革命性影响与未来启示
人工智能·自然语言处理·知识图谱
人工智能培训22 分钟前
Transformer-位置编码(Position Embedding)
人工智能·深度学习·大模型·transformer·embedding·vision
丰年稻香31 分钟前
神经网络二分类任务详解:前向传播与反向传播的数学计算
人工智能·神经网络·分类
Lethehong42 分钟前
DeepSeek-V3.1-Terminus:蓝耘API+CherryStudio实测国产最新开源模型,推理能力竟让我后背发凉
人工智能·大模型·deepseek·蓝耘元生代·蓝耘maas·ai ping
咖啡星人k1 小时前
AI 大模型驱动的开源知识库搭建系统 PandaWiki的网页挂件机器人教程
人工智能·机器人·开源
QYR_111 小时前
机器人定位器市场报告:2025-2031 年行业增长逻辑与投资机遇解析
大数据·人工智能
我是个菜鸡.1 小时前
视觉/深度学习/机器学习相关面经总结(3)(持续更新)
人工智能·深度学习·机器学习