HADOOP——序列化

1.创建一个data目录在主目录下,并且在data目录下新建log.txt文件

2.新建flow软件包,在example软件包下

FlowBean

复制代码
package com.example.flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

//hadoop序列化
//三个属性:手机号。上行流量,下行流量
public class FlowBean implements Writable {
    private String phone;
    private long upFlow;
    private long downFlow;
    public FlowBean(String phone, long upFlow, long downFlow) {
        this.phone = phone;
        this.upFlow = upFlow;
        this.downFlow = downFlow;
    }
    //定义setter和get方法
    public String getPhone() {
        return phone;
    }
    public void setPhone(String phone) {
        this.phone = phone;
    }
    public long getUpFlow() {
        return upFlow;
    }
    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }
    //定义无参构造
    public FlowBean() {}
    //定义一个获取总量的方法
    public long getSumFlow(){
        return upFlow+downFlow;
    }

    @Override
    public void write(DataOutput dataOutput) throws IOException {
       dataOutput.writeUTF(phone);
       dataOutput.writeLong(upFlow);
       dataOutput.writeLong(downFlow);
    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {
        phone = dataInput.readUTF();
        upFlow = dataInput.readLong();
        downFlow = dataInput.readLong();

    }
    public long getDownFlow() {
        return downFlow;
    }
}

FlowDriver

复制代码
package com.example.flow;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;


public class FlowDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException, IOException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        job.setJarByClass(FlowDriver.class);

        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        FileInputFormat.setInputPaths(job, new Path("data"));
        FileOutputFormat.setOutputPath(job, new Path("output"));
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

FlowMapper

复制代码
package com.example.flow;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

//1.继承Mapper
//2.重写map函数
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        System.out.println(value);

        //1.获取一行数据.使用空格拆分
        //手机号就是第一个元素
        //上行流量就是第二个元素
        //下行流量就是第三个元素
        String[] split = value.toString().split("\\s+");
        String phone = split[0];


        long upFlow = Long.parseLong(split[1]);
        long downFlow = Long.parseLong(split[2]);
        //封装对象
        FlowBean flowBean = new FlowBean(phone,upFlow, downFlow);
        //写入手机号为key,值就是这个对象
        context.write(new Text(phone),flowBean);
    }
}

FlowReducer

复制代码
package com.example.flow;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

//1.继承Reducer
//2.重写reducer
public class FlowReducer extends Reducer<Text,FlowBean,Text,Text> {
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {

        //1.遍历集合,取出每一个元素,计算上行流量和下行流量的总和
        long upFlowSum = 0L;
        long downFlowSum = 0L;
        for (FlowBean flowBean : values) {
            upFlowSum += flowBean.getUpFlow();
            downFlowSum += flowBean.getDownFlow();
        }
        //2.计算总的汇总
        long sumFlow = upFlowSum + downFlowSum;
        String flowBean = String.format("总的上行流量是: %d,总的下行流量是:%d,总的流量是:%d",upFlowSum,downFlowSum,sumFlow);

        context.write(key,new Text(flowBean));
    }
}
相关推荐
异常君9 分钟前
深入剖析 Redis 集群:分布式架构与实现原理全解
redis·分布式·后端
酷炫码神1 小时前
Windows10系统RabbitMQ无法访问Web端界面
前端·分布式·rabbitmq
青春不流名1 小时前
flink任务提交example
大数据·flink
神奇的黄豆3 小时前
Spark-sql编程
大数据·sql·spark
曾经的三心草3 小时前
博客系统-RabbitMQ
分布式·rabbitmq
西岭千秋雪_3 小时前
Nacos配置中心客户端处理服务端配置信息源码解析
java·开发语言·分布式·spring·微服务·中间件
Cachel wood4 小时前
大数据开发知识1:数据仓库
android·大数据·数据仓库·sql·mysql·算法·ab测试
TDengine (老段)4 小时前
TDengine 整体构架
大数据·数据库·物联网·时序数据库·tdengine·iotdb
DemonAvenger4 小时前
Go并发编程进阶:无锁数据结构与效率优化实战
分布式·架构·go
lilye665 小时前
精益数据分析(7/126):打破创业幻想,拥抱数据驱动
大数据·人工智能·数据分析