HADOOP——序列化

1.创建一个data目录在主目录下,并且在data目录下新建log.txt文件

2.新建flow软件包,在example软件包下

FlowBean

复制代码
package com.example.flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

//hadoop序列化
//三个属性:手机号。上行流量,下行流量
public class FlowBean implements Writable {
    private String phone;
    private long upFlow;
    private long downFlow;
    public FlowBean(String phone, long upFlow, long downFlow) {
        this.phone = phone;
        this.upFlow = upFlow;
        this.downFlow = downFlow;
    }
    //定义setter和get方法
    public String getPhone() {
        return phone;
    }
    public void setPhone(String phone) {
        this.phone = phone;
    }
    public long getUpFlow() {
        return upFlow;
    }
    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }
    //定义无参构造
    public FlowBean() {}
    //定义一个获取总量的方法
    public long getSumFlow(){
        return upFlow+downFlow;
    }

    @Override
    public void write(DataOutput dataOutput) throws IOException {
       dataOutput.writeUTF(phone);
       dataOutput.writeLong(upFlow);
       dataOutput.writeLong(downFlow);
    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {
        phone = dataInput.readUTF();
        upFlow = dataInput.readLong();
        downFlow = dataInput.readLong();

    }
    public long getDownFlow() {
        return downFlow;
    }
}

FlowDriver

复制代码
package com.example.flow;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;


public class FlowDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException, IOException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        job.setJarByClass(FlowDriver.class);

        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        FileInputFormat.setInputPaths(job, new Path("data"));
        FileOutputFormat.setOutputPath(job, new Path("output"));
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

FlowMapper

复制代码
package com.example.flow;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

//1.继承Mapper
//2.重写map函数
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        System.out.println(value);

        //1.获取一行数据.使用空格拆分
        //手机号就是第一个元素
        //上行流量就是第二个元素
        //下行流量就是第三个元素
        String[] split = value.toString().split("\\s+");
        String phone = split[0];


        long upFlow = Long.parseLong(split[1]);
        long downFlow = Long.parseLong(split[2]);
        //封装对象
        FlowBean flowBean = new FlowBean(phone,upFlow, downFlow);
        //写入手机号为key,值就是这个对象
        context.write(new Text(phone),flowBean);
    }
}

FlowReducer

复制代码
package com.example.flow;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

//1.继承Reducer
//2.重写reducer
public class FlowReducer extends Reducer<Text,FlowBean,Text,Text> {
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {

        //1.遍历集合,取出每一个元素,计算上行流量和下行流量的总和
        long upFlowSum = 0L;
        long downFlowSum = 0L;
        for (FlowBean flowBean : values) {
            upFlowSum += flowBean.getUpFlow();
            downFlowSum += flowBean.getDownFlow();
        }
        //2.计算总的汇总
        long sumFlow = upFlowSum + downFlowSum;
        String flowBean = String.format("总的上行流量是: %d,总的下行流量是:%d,总的流量是:%d",upFlowSum,downFlowSum,sumFlow);

        context.write(key,new Text(flowBean));
    }
}
相关推荐
跨境卫士-小卓1 小时前
eBay新政深度解读:2025跨境交易规则重构与卖家应对策略
大数据·重构·跨境电商
PawSQL1 小时前
十年磨一剑!Apache Hive 性能优化演进全史(2013 - )
大数据·hive·性能优化
IsPrisoner2 小时前
深入理解 Elasticsearch:从原理到实战的系统性解析
大数据·elasticsearch·搜索引擎
派可数据BI可视化2 小时前
解读商业智能BI,数据仓库中的元数据
大数据·数据仓库·数据分析·spark·商业智能bi
蝎子莱莱爱打怪10 小时前
Hadoop3.3.5、Hbase2.6.1 集群搭建&Phoenix使用记录
大数据·后端·hbase
越来越无动于衷11 小时前
Spring Boot 整合 Spring MVC:自动配置与扩展实践
数据仓库·hive·hadoop
chenglin01612 小时前
ES_索引的操作
大数据·数据库·elasticsearch
程序员不迷路13 小时前
Flink学习
大数据·flink
码农小灰14 小时前
Kafka消息持久化机制全解析:存储原理与实战场景
java·分布式·kafka
Raisy_15 小时前
05 ODS层(Operation Data Store)
大数据·数据仓库·kafka·flume