llama factory

微调大模型可以像这样轻松...

https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272

选择你的打开方式:

!NOTE\] 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。

目录

项目特色

  • 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
  • 多种精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
  • 先进算法GaLoreBAdamAPOLLOAdam-mini、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
  • 实用技巧FlashAttention-2UnslothLiger Kernel、RoPE scaling、NEFTune 和 rsLoRA。
  • 广泛任务:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

最新模型的 Day-N 微调适配

适配时间 模型名称
Day 0 Qwen2.5 / Qwen2-VL / QwQ / QvQ / InternLM3 / MiniCPM-o-2.6
Day 1 Llama 3 / GLM-4 / Mistral Small / PaliGemma2

性能指标

与 ChatGLM 官方的 P-Tuning 微调相比,LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。

更新日志

25/02/24\] 我们宣布开源 **[EasyR1](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fhiyouga%2FEasyR1 "EasyR1")**,一个高效可扩展的多模态强化学习框架,支持 GRPO 训练。 \[25/02/11\] 我们支持了在导出模型时保存 **[Ollama](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Follama%2Follama "Ollama")** 配置文件。详细用法请参照 [examples](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/examples/README_zh.md "examples")。 \[25/02/05\] 我们支持了在语音理解任务上微调 **[Qwen2-Audio](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/Qwen/Qwen2-Audio-7B-Instruct "Qwen2-Audio")** 和 **[MiniCPM-o-2.6](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fopenbmb%2FMiniCPM-o-2_6 "MiniCPM-o-2.6")** 模型。 \[25/01/31\] 我们支持了 **[DeepSeek-R1](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fdeepseek-ai%2FDeepSeek-R1 "DeepSeek-R1")** 和 **[Qwen2.5-VL](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FQwen%2FQwen2.5-VL-7B-Instruct "Qwen2.5-VL")** 模型的微调。 ### 模型 | 模型名 | 参数量 | Template | |------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------| | [Baichuan 2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fbaichuan-inc "Baichuan 2") | 7B/13B | baichuan2 | | [BLOOM/BLOOMZ](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fbigscience "BLOOM/BLOOMZ") | 560M/1.1B/1.7B/3B/7.1B/176B | - | | [ChatGLM3](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FTHUDM "ChatGLM3") | 6B | chatglm3 | | [Command R](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FCohereForAI "Command R") | 35B/104B | cohere | | [DeepSeek (Code/MoE)](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fdeepseek-ai "DeepSeek (Code/MoE)") | 7B/16B/67B/236B | deepseek | | [DeepSeek 2.5/3](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fdeepseek-ai "DeepSeek 2.5/3") | 236B/671B | deepseek3 | | [DeepSeek R1 (Distill)](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fdeepseek-ai "DeepSeek R1 (Distill)") | 1.5B/7B/8B/14B/32B/70B/671B | deepseek3 | | [Falcon](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Ftiiuae "Falcon") | 7B/11B/40B/180B | falcon | | [Gemma/Gemma 2/CodeGemma](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fgoogle "Gemma/Gemma 2/CodeGemma") | 2B/7B/9B/27B | gemma | | [GLM-4](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FTHUDM "GLM-4") | 9B | glm4 | | [GPT-2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fopenai-community "GPT-2") | 0.1B/0.4B/0.8B/1.5B | - | | [Granite 3.0-3.1](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fibm-granite "Granite 3.0-3.1") | 1B/2B/3B/8B | granite3 | | [Index](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FIndexTeam "Index") | 1.9B | index | | [InternLM 2-3](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Finternlm "InternLM 2-3") | 7B/8B/20B | intern2 | | [Llama](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Ffacebookresearch%2Fllama "Llama") | 7B/13B/33B/65B | - | | [Llama 2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmeta-llama "Llama 2") | 7B/13B/70B | llama2 | | [Llama 3-3.3](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmeta-llama "Llama 3-3.3") | 1B/3B/8B/70B | llama3 | | [Llama 3.2 Vision](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmeta-llama "Llama 3.2 Vision") | 11B/90B | mllama | | [LLaVA-1.5](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fllava-hf "LLaVA-1.5") | 7B/13B | llava | | [LLaVA-NeXT](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fllava-hf "LLaVA-NeXT") | 7B/8B/13B/34B/72B/110B | llava_next | | [LLaVA-NeXT-Video](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fllava-hf "LLaVA-NeXT-Video") | 7B/34B | llava_next_video | | [MiniCPM](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fopenbmb "MiniCPM") | 1B/2B/4B | cpm/cpm3 | | [MiniCPM-o-2.6/MiniCPM-V-2.6](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fopenbmb "MiniCPM-o-2.6/MiniCPM-V-2.6") | 8B | minicpm_o/minicpm_v | | [Ministral/Mistral-Nemo](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmistralai "Ministral/Mistral-Nemo") | 8B/12B | ministral | | [Mistral/Mixtral](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmistralai "Mistral/Mixtral") | 7B/8x7B/8x22B | mistral | | [Mistral Small](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmistralai "Mistral Small") | 24B | mistral_small | | [OLMo](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fallenai "OLMo") | 1B/7B | - | | [PaliGemma/PaliGemma2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fgoogle "PaliGemma/PaliGemma2") | 3B/10B/28B | paligemma | | [Phi-1.5/Phi-2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmicrosoft "Phi-1.5/Phi-2") | 1.3B/2.7B | - | | [Phi-3/Phi-3.5](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmicrosoft "Phi-3/Phi-3.5") | 4B/14B | phi | | [Phi-3-small](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmicrosoft "Phi-3-small") | 7B | phi_small | | [Phi-4](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmicrosoft "Phi-4") | 14B | phi4 | | [Pixtral](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmistralai "Pixtral") | 12B | pixtral | | [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FQwen "Qwen/QwQ (1-2.5) (Code/Math/MoE)") | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen | | [Qwen2-Audio](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FQwen "Qwen2-Audio") | 7B | qwen2_audio | | [Qwen2-VL/Qwen2.5-VL/QVQ](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FQwen "Qwen2-VL/Qwen2.5-VL/QVQ") | 2B/3B/7B/72B | qwen2_vl | | [Skywork o1](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FSkywork "Skywork o1") | 8B | skywork_o1 | | [StarCoder 2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fbigcode "StarCoder 2") | 3B/7B/15B | - | | [TeleChat2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FTele-AI "TeleChat2") | 3B/7B/35B/115B | telechat2 | | [XVERSE](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fxverse "XVERSE") | 7B/13B/65B | xverse | | [Yi/Yi-1.5 (Code)](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2F01-ai "Yi/Yi-1.5 (Code)") | 1.5B/6B/9B/34B | yi | | [Yi-VL](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2F01-ai "Yi-VL") | 6B/34B | yi_vl | | [Yuan 2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FIEITYuan "Yuan 2") | 2B/51B/102B | yuan | > \[!NOTE\] 对于所有"基座"(Base)模型,`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但"对话"(Instruct/Chat)模型请务必使用**对应的模板**。 > > 请务必在训练和推理时采用**完全一致**的模板。 项目所支持模型的完整列表请参阅 [constants.py](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/src/llamafactory/extras/constants.py "constants.py")。 您也可以在 [template.py](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/src/llamafactory/data/template.py "template.py") 中添加自己的对话模板。 ### 训练方法 | 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA | |----------|-------|--------|------|-------| | 预训练 | | | | | | 指令监督微调 | | | | | | 奖励模型训练 | | | | | | PPO 训练 | | | | | | DPO 训练 | | | | | | KTO 训练 | | | | | | ORPO 训练 | | | | | | SimPO 训练 | | | | | > \[!TIP\] 有关 PPO 的实现细节,请参考[此博客](https://gitee.com/link?target=https%3A%2F%2Fnewfacade.github.io%2Fnotes-on-reinforcement-learning%2F17-ppo-trl.html "此博客")。 ### 数据集 部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。 pip install --upgrade huggingface_hub huggingface-cli login ### 软硬件依赖 | 必需项 | 至少 | 推荐 | |--------------|--------|--------| | python | 3.9 | 3.10 | | torch | 1.13.1 | 2.4.0 | | transformers | 4.41.2 | 4.49.0 | | datasets | 2.16.0 | 3.2.0 | | accelerate | 0.34.0 | 1.2.1 | | peft | 0.11.1 | 0.12.0 | | trl | 0.8.6 | 0.9.6 | | 可选项 | 至少 | 推荐 | |--------------|--------|--------| | CUDA | 11.6 | 12.2 | | deepspeed | 0.10.0 | 0.16.2 | | bitsandbytes | 0.39.0 | 0.43.1 | | vllm | 0.4.3 | 0.7.2 | | flash-attn | 2.3.0 | 2.7.2 | #### 硬件依赖 \* *估算值* | 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B | |--------------------------|----|-------|-------|-------|--------|--------|-------|--------| | Full | 32 | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB | | Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB | | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB | | LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB | | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB | | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB | ### 如何使用 #### 安装 LLaMA Factory > \[!IMPORTANT\] 此步骤为必需。 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]" 可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、quality > \[!TIP\] 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。 #### 数据准备 关于数据集文件的格式,请参考 [data/README_zh.md](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/data/README_zh.md "data/README_zh.md") 的内容。你可以使用 HuggingFace / ModelScope / Modelers 上的数据集或加载本地数据集。 > \[!NOTE\] 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。 #### 快速开始 下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调** 、**推理** 和**合并**。 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml llamafactory-cli chat examples/inference/llama3_lora_sft.yaml llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml 高级用法请参考 [examples/README_zh.md](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/examples/README_zh.md "examples/README_zh.md")(包括多 GPU 微调)。 > \[!TIP\] 使用 `llamafactory-cli help` 显示帮助信息。 #### LLaMA Board 可视化微调(由 [Gradio](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fgradio-app%2Fgradio "Gradio") 驱动) llamafactory-cli webui #### 构建 Docker CUDA 用户: cd docker/docker-cuda/ docker compose up -d docker compose exec llamafactory bash 昇腾 NPU 用户: cd docker/docker-npu/ docker compose up -d docker compose exec llamafactory bash AMD ROCm 用户: cd docker/docker-rocm/ docker compose up -d docker compose exec llamafactory bash 不使用 Docker Compose 构建 #### 利用 vLLM 部署 OpenAI API API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml > \[!TIP\] API 文档请查阅[这里](https://gitee.com/link?target=https%3A%2F%2Fplatform.openai.com%2Fdocs%2Fapi-reference%2Fchat%2Fcreate "这里")。 > > 示例:[图像理解](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/scripts/api_example/test_image.py "图像理解") \| [工具调用](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/scripts/api_example/test_toolcall.py "工具调用") #### 从魔搭社区下载 如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。 export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1` 将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://gitee.com/link?target=https%3A%2F%2Fmodelscope.cn%2Fmodels "魔搭社区")查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。 #### 从魔乐社区下载 您也可以通过下述方法,使用魔乐社区下载数据集和模型。 export USE_OPENMIND_HUB=1 # Windows 使用 `set USE_OPENMIND_HUB=1` 将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔乐社区](https://gitee.com/link?target=https%3A%2F%2Fmodelers.cn%2Fmodels "魔乐社区")查看所有可用的模型,例如 `TeleAI/TeleChat-7B-pt`。 #### 使用 W\&B 面板 若要使用 [Weights \& Biases](https://gitee.com/link?target=https%3A%2F%2Fwandb.ai "Weights & Biases") 记录实验数据,请在 yaml 文件中添加下面的参数。 report_to: wandb run_name: test_run # 可选 在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://gitee.com/link?target=https%3A%2F%2Fwandb.ai%2Fauthorize "密钥")来登录 W\&B 账户。 #### 使用 SwanLab 面板 若要使用 [SwanLab](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FSwanHubX%2FSwanLab "SwanLab") 记录实验数据,请在 yaml 文件中添加下面的参数。 use_swanlab: true swanlab_run_name: test_run # 可选 在启动训练任务时,登录SwanLab账户有以下三种方式: 方式一:在 yaml 文件中添加 `swanlab_api_key=` ,并设置为你的 [API 密钥](https://gitee.com/link?target=https%3A%2F%2Fswanlab.cn%2Fsettings "API 密钥")。 方式二:将环境变量 `SWANLAB_API_KEY` 设置为你的 [API 密钥](https://gitee.com/link?target=https%3A%2F%2Fswanlab.cn%2Fsettings "API 密钥")。 方式三:启动前使用 `swanlab login` 命令完成登录。 ### 协议 本仓库的代码依照 [Apache-2.0](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/LICENSE "Apache-2.0") 协议开源。 使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fbaichuan-inc%2FBaichuan2-7B-Base%2Fblob%2Fmain%2FCommunity%2520License%2520for%2520Baichuan%25202%2520Model.pdf "Baichuan 2") / [BLOOM](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbigscience%2Flicense "BLOOM") / [ChatGLM3](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FTHUDM%2FChatGLM3%2Fblob%2Fmain%2FMODEL_LICENSE "ChatGLM3") / [Command R](https://gitee.com/link?target=https%3A%2F%2Fcohere.com%2Fc4ai-cc-by-nc-license "Command R") / [DeepSeek](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fdeepseek-ai%2FDeepSeek-LLM%2Fblob%2Fmain%2FLICENSE-MODEL "DeepSeek") / [Falcon](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Ftiiuae%2Ffalcon-180B%2Fblob%2Fmain%2FLICENSE.txt "Falcon") / [Gemma](https://gitee.com/link?target=https%3A%2F%2Fai.google.dev%2Fgemma%2Fterms "Gemma") / [GLM-4](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FTHUDM%2Fglm-4-9b%2Fblob%2Fmain%2FLICENSE "GLM-4") / [GPT-2](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fopenai%2Fgpt-2%2Fblob%2Fmaster%2FLICENSE "GPT-2") / [Granite](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/LICENSE "Granite") / [Index](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FIndexTeam%2FIndex-1.9B%2Fblob%2Fmain%2FLICENSE "Index") / [InternLM](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FInternLM%2FInternLM%23license "InternLM") / [Llama](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Ffacebookresearch%2Fllama%2Fblob%2Fmain%2FMODEL_CARD.md "Llama") / [Llama 2 (LLaVA-1.5)](https://gitee.com/link?target=https%3A%2F%2Fai.meta.com%2Fllama%2Flicense%2F "Llama 2 (LLaVA-1.5)") / [Llama 3](https://gitee.com/link?target=https%3A%2F%2Fllama.meta.com%2Fllama3%2Flicense%2F "Llama 3") / [MiniCPM](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FOpenBMB%2FMiniCPM%2Fblob%2Fmain%2FMiniCPM%2520Model%2520License.md "MiniCPM") / [Mistral/Mixtral/Pixtral](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/LICENSE "Mistral/Mixtral/Pixtral") / [OLMo](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/LICENSE "OLMo") / [Phi-1.5/Phi-2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmicrosoft%2Fphi-1_5%2Fresolve%2Fmain%2FResearch%2520License.docx "Phi-1.5/Phi-2") / [Phi-3/Phi-4](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fmicrosoft%2FPhi-3-mini-4k-instruct%2Fblob%2Fmain%2FLICENSE "Phi-3/Phi-4") / [Qwen](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FQwenLM%2FQwen%2Fblob%2Fmain%2FTongyi%2520Qianwen%2520LICENSE%2520AGREEMENT "Qwen") / [Skywork](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FSkywork%2FSkywork-13B-base%2Fblob%2Fmain%2FSkywork%2520Community%2520License.pdf "Skywork") / [StarCoder 2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbigcode%2Fbigcode-model-license-agreement "StarCoder 2") / [TeleChat2](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2FTele-AI%2Ftelechat-7B%2Fblob%2Fmain%2FTeleChat%25E6%25A8%25A1%25E5%259E%258B%25E7%25A4%25BE%25E5%258C%25BA%25E8%25AE%25B8%25E5%258F%25AF%25E5%258D%258F%25E8%25AE%25AE.pdf "TeleChat2") / [XVERSE](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fxverse-ai%2FXVERSE-13B%2Fblob%2Fmain%2FMODEL_LICENSE.pdf "XVERSE") / [Yi](https://gitee.com/link?target=https%3A%2F%2Fhuggingface.co%2F01-ai%2FYi-6B%2Fblob%2Fmain%2FLICENSE "Yi") / [Yi-1.5](https://gitee.com/morningwindsir/LLaMA-Factory/blob/main/LICENSE "Yi-1.5") / [Yuan 2](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FIEIT-Yuan%2FYuan-2.0%2Fblob%2Fmain%2FLICENSE-Yuan "Yuan 2") ### 引用 如果您觉得此项目有帮助,请考虑以下列格式引用 @inproceedings{zheng2024llamafactory, title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models}, author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma}, booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)}, address={Bangkok, Thailand}, publisher={Association for Computational Linguistics}, year={2024}, url={http://arxiv.org/abs/2403.13372} } ### 致谢 本项目受益于 [PEFT](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fhuggingface%2Fpeft "PEFT")、[TRL](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fhuggingface%2Ftrl "TRL")、[QLoRA](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Fartidoro%2Fqlora "QLoRA") 和 [FastChat](https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2Flm-sys%2FFastChat "FastChat"),感谢以上诸位作者的付出。

相关推荐
TMT星球2 分钟前
快手本地生活2024年GMV同增200%,“新线城市+AI”将成增长引擎
大数据·人工智能·生活
CV-杨帆3 分钟前
论文阅读:2023 arxiv A Survey of Reinforcement Learning from Human Feedback
论文阅读·人工智能
CH3_CH2_CHO6 分钟前
DAY08:【pytorch】模型容器
人工智能·pytorch·python
Tiger Z7 分钟前
R 语言科研绘图 --- 饼状图-汇总
开发语言·人工智能·程序人生·r语言·贴图
边缘计算社区10 分钟前
边缘计算与AI融合:技术创新与产业变革的交汇点
人工智能·边缘计算
量子位13 分钟前
人形机器人半马冠军,为什么会选择全尺寸?
人工智能·openai
量子位16 分钟前
o3/o4-mini 幻觉暴增 2-3 倍!OpenAI 官方承认暂无法解释原因
人工智能·openai
希陌ximo17 分钟前
GPU选型大对决:4090、A6000、L40谁才是AI推理的最佳拍档?
人工智能·算法·支持向量机·排序算法·推荐算法·迭代加深
黑客-雨17 分钟前
一文读懂 MCP!大模型如何用它连接世界,打造更智能的 AI Agent?
人工智能·ai·大模型·llm·agent·ai大模型·mcp