协同过滤推荐算法的入门案例

目录


推荐算法的核心是预测用户可能喜欢的内容,并据此进行推荐。这里用一个非常简单的电影推荐案例,解释最常见的协同过滤原理。

数据介绍

假设有3个用户(小明、小红、小刚)对4部电影的评分(1~5分),未评分的用"-"表示:

已经采集到的数据如下:

用户 复仇者 钢铁侠 爱情故事 雷神
小明 5 4 - 2
小红 4 5 3 -
小刚 1 2 5 4

目标:

为小明推荐他可能感兴趣的电影(比如《雷神》评分低,可不推荐;《爱情故事》未评分,是否需要推荐?)

数据映射

数组:

\[ 5, 4, 0, 2

4, 5, 3, 0

1, 2, 5, 4\]

计算相识度

推荐的原理就是计算目标用户和其他用户的相识度,推荐相识度高喜欢的作品给他。

找到相似用户的步骤:(常用方法:余弦相似度)

  • 小明 vs 小红:共同评分的电影是《复仇者》《钢铁侠》。

    • 小明的评分向量:[5, 4]
    • 小红的评分向量:[4, 5]
    • 余弦相似度 = (5×4 + 4×5) / (√(5²+4²) × √(4²+5²)) ≈ 0.98(非常相似)
  • 小明 vs 小刚:共同评分的电影是《雷神》,但小明和小刚对《雷神》评分差异大(小明2分,小刚4分),相似度低。

  • 结论:小红和小明兴趣最接近。

补充

余弦相似度(Cosine Similarity)是一种衡量两个向量方向相似程度的指标,常用于推荐系统、文本分析等领域。它的核心思想是:通过计算两个向量之间的夹角余弦值,判断它们的方向是否接近。方向越接近,余弦值越接近1;方向相反则接近-1;垂直则为0。

余弦相似度 = A * B / ||A|| * ||B|| = (5×4 + 4×5) / (√(5²+4²) × √(4²+5²)) ≈ 0.98(非常相似)

看图理解,

两根绿线的夹角较小,表示更相似。

一个绿线和蓝线所形成的夹角大,就相对没那么相似。

扩展

  • 基于内容的推荐:分析电影特征(如类型、导演),推荐相似属性的电影(如喜欢《钢铁侠》→ 推荐科幻片)。

  • 混合推荐:结合协同过滤和内容过滤,提高准确性。

预测偏好

简单预测

假设要预测小明对《爱情故事》的评分,已知:

小红与小明相似度 0.98,对《爱情故事》评分为 3;

小刚与小明相似度 1.0,对《爱情故事》评分为 5。

直接取平均:(3+5)/2=4 → 但未考虑相似度差异。

采用加权(多用户加权)

加权平均的原理

核心思想:相似度高的用户意见更重要,应赋予更高权重。

预测小明对《爱情故事》电影的评分是 4.01分,评分较高,值得推荐。

总结

案例很简单,主要用到如下数学概念:

  • 二维矩阵
  • 余弦相似
  • 加权平均
相关推荐
4311媒体网1 天前
U++集成开发环境:提升编码效率
宽度优先·推荐算法
jghhh012 天前
基于MATLAB的协同过滤推荐算法实现
开发语言·matlab·推荐算法
pursue.dreams2 天前
马斯克开源X推荐算法深度解析:Grok驱动的推荐系统架构
系统架构·开源·推荐算法·x
麦麦大数据4 天前
F076 中医中药知识智能问答与图谱构建研究系统 Vue+Flask+Neo4j
vue.js·flask·知识图谱·neo4j·智能问答·推荐算法·中医中药
计算机学姐7 天前
基于SpringBoot的演唱会抢票系统
java·spring boot·后端·spring·tomcat·intellij-idea·推荐算法
BHXDML7 天前
第六章:推荐算法
算法·机器学习·推荐算法
LDG_AGI8 天前
【机器学习】深度学习推荐系统(三十一):X For You Feed 全新推荐系统技术架构深度解析
人工智能·深度学习·算法·机器学习·架构·推荐算法
安特尼8 天前
X 推荐算法分析
算法·机器学习·推荐算法
散峰而望8 天前
【基础算法】高精度运算深度解析与优化
数据结构·c++·算法·链表·贪心算法·推荐算法
得物技术9 天前
入选AAAI-PerFM|得物社区推荐之基于大语言模型的新颖性推荐算法
人工智能·语言模型·推荐算法