源超长视频生成模型:FramePack

FramePack 是一种下一帧(下一帧部分)预测神经网络结构,可以逐步生成视频。

FramePack 将输入上下文压缩为固定长度,使得生成工作量与视频长度无关。即使在笔记本电脑的 GPU 上,FramePack 也能处理大量帧,甚至使用 13B 模型。

FramePack 可以使用更大的批量大小进行训练,类似于图像扩散训练的批量大小。

使用 13B 模型生成 1 分钟视频(60 秒)以 30fps(1800 帧),所需的最低 GPU 内存为 6GB。

关于速度,在 RTX 4090 台式机上,它以 2.5 秒/帧(未优化)或 1.5 秒/帧(teacache)的速度生成。在笔记本电脑上,比如 3070ti 笔记本电脑或 3060 笔记本电脑,它大约慢 4 倍到 8 倍。

操作UI如下:

快速理解 FramePack:

下一个帧(或下一个帧部分)预测模型看起来是这样的:

所以我们有很多输入帧,并希望扩散一些新帧。

我们可以将输入帧编码成类似这样的 GPU 布局:

此图表显示了逻辑 GPU 内存布局 - 图像帧并未拼接。

或者,比如说每个输入帧的上下文长度。

每个帧都使用不同的 patchifying 内核进行编码以实现这一点。

例如,在 HunyuanVideo 中,如果使用(1, 2, 2)补丁化内核,480p 帧可能是 1536 个 token。

然后,如果改为(2, 4, 4)补丁化内核,帧将是 192 个 token。

这样,我们可以改变每个帧的上下文长度。

"更重要"的帧会分配更多的 GPU 资源(上下文长度)- 在这个例子中,F0 是最重要的,因为它是最接近"下一帧预测"目标的帧。

这是对流处理的 O(1)计算复杂度 - 是的,这是一个常数,甚至不是 O(nlogn)或 O(n)。

实际上这些是 FramePack 调度,就像这样:

因此可以获取不同的压缩模式。

甚至可以让起始帧同样重要,这样图像到视频的转换会更加愉快

所有这些调度都是 O(1)的。

抗漂移采样:

漂移是任何下一何-何预测模型的常见问题,漂移指的是随着视频变长而出现的质量退化,有时这个问题也被称作误差累积或曝光偏差。

(阴影方框是每次流推理中生成的帧)

注意,只有"vanilla sampling"是因果的;"anti-drifting sampling"和"inverted anti-drifting sampling"都是双向的。

"倒置反漂移采样"非常重要。这种方法是唯一一种在所有推理中始终将第一帧作为近似目标的。这种方法非常适合图像到视频。

图像到 5 秒(30fps,150 帧)视频生成:

图像转 60 秒(30fps,1800 帧)视频生成:

项目地址:https://github.com/lllyasviel/FramePack

模型地址:https://huggingface.co/lllyasviel/FramePackI2V_HY/tree/main

相关推荐
SmartBrain2 天前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
JoannaJuanCV3 天前
大语言模型基石:Transformer
人工智能·语言模型·transformer
大千AI助手3 天前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
张较瘦_3 天前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
什么都想学的阿超3 天前
【大语言模型 58】分布式文件系统:训练数据高效存储
人工智能·语言模型·自然语言处理
J_Xiong01173 天前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
艾醒(AiXing-w)3 天前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
linux·人工智能·语言模型
这张生成的图像能检测吗3 天前
(综述)视觉任务的视觉语言模型
人工智能·计算机视觉·语言模型·自然语言处理·视觉语言模型
semantist@语校3 天前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt
fanstuck3 天前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt