OpenCV 图形API(53)颜色空间转换-----将 RGB 图像转换为灰度图像函数RGB2Gray()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将图像从 RGB 色彩空间转换为灰度。

R、G 和 B 通道值的常规范围是 0 到 255。生成的灰度值计算方式如下:
dst ( I ) = 0.299 ∗ src ( I ) . R + 0.587 ∗ src ( I ) . G + 0.114 ∗ src ( I ) . B \texttt{dst} (I)= \texttt{0.299} * \texttt{src}(I).R + \texttt{0.587} * \texttt{src}(I).G + \texttt{0.114} * \texttt{src}(I).B dst(I)=0.299∗src(I).R+0.587∗src(I).G+0.114∗src(I).B

注意:

函数的文字 ID 是 "org.opencv.imgproc.colorconvert.rgb2gray"

函数原型

cpp 复制代码
GMat cv::gapi::RGB2Gray 	
(
 	const GMat &  	src
) 	

参数

  • 参数 src: 输入图像,8 位无符号三通道图像 CV_8UC3。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp> // 包含核心功能
#include <opencv2/gapi/imgproc.hpp> // 包含图像处理功能

int main() {
    // 读取一个RGB图像
    cv::Mat rgb_img = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/Lenna.png");
    if (rgb_img.empty()) {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    // 定义G-API图
    cv::GMat src;
    auto gray = cv::gapi::RGB2Gray(src);

    cv::GComputation comp(cv::GIn(src), cv::GOut(gray));

    // 创建输出矩阵
    cv::Mat out_gray;

    // 应用计算图并执行转换,指定使用默认的CPU后端
    comp.apply(cv::gin(rgb_img), cv::gout(out_gray),
               cv::compile_args(cv::gapi::kernels()));

    // 显示结果
    cv::imshow("Original RGB Image", rgb_img);
    cv::imshow("Converted Gray Image", out_gray);
    cv::waitKey(0);

    return 0;
}

运行结果

相关推荐
weixin_437497772 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端2 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat2 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技2 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪2 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子3 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z3 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人3 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风3 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
itwangyang5203 小时前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能