OpenCV 图形API(53)颜色空间转换-----将 RGB 图像转换为灰度图像函数RGB2Gray()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将图像从 RGB 色彩空间转换为灰度。

R、G 和 B 通道值的常规范围是 0 到 255。生成的灰度值计算方式如下:
dst ( I ) = 0.299 ∗ src ( I ) . R + 0.587 ∗ src ( I ) . G + 0.114 ∗ src ( I ) . B \texttt{dst} (I)= \texttt{0.299} * \texttt{src}(I).R + \texttt{0.587} * \texttt{src}(I).G + \texttt{0.114} * \texttt{src}(I).B dst(I)=0.299∗src(I).R+0.587∗src(I).G+0.114∗src(I).B

注意:

函数的文字 ID 是 "org.opencv.imgproc.colorconvert.rgb2gray"

函数原型

cpp 复制代码
GMat cv::gapi::RGB2Gray 	
(
 	const GMat &  	src
) 	

参数

  • 参数 src: 输入图像,8 位无符号三通道图像 CV_8UC3。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp> // 包含核心功能
#include <opencv2/gapi/imgproc.hpp> // 包含图像处理功能

int main() {
    // 读取一个RGB图像
    cv::Mat rgb_img = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/Lenna.png");
    if (rgb_img.empty()) {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    // 定义G-API图
    cv::GMat src;
    auto gray = cv::gapi::RGB2Gray(src);

    cv::GComputation comp(cv::GIn(src), cv::GOut(gray));

    // 创建输出矩阵
    cv::Mat out_gray;

    // 应用计算图并执行转换,指定使用默认的CPU后端
    comp.apply(cv::gin(rgb_img), cv::gout(out_gray),
               cv::compile_args(cv::gapi::kernels()));

    // 显示结果
    cv::imshow("Original RGB Image", rgb_img);
    cv::imshow("Converted Gray Image", out_gray);
    cv::waitKey(0);

    return 0;
}

运行结果

相关推荐
量子位3 分钟前
华人横扫 ICLR 2025 杰出论文奖,三篇均为华人一作,中科大何向南团队 / 清华姚班北大校友在列
人工智能
量子位3 分钟前
无需数据标注!测试时强化学习,模型数学能力暴增 | 清华 & 上海 AI Lab
人工智能·gitlab·aigc
硅谷秋水6 分钟前
UniOcc:自动驾驶占用预测和预报的统一基准
人工智能·深度学习·机器学习·计算机视觉·自动驾驶
Clocky77 分钟前
图像预处理-模板匹配
图像处理·opencv·计算机视觉
Dm_dotnet8 分钟前
使用CAMEL实现Graph RAG过程记录
人工智能
BuluAI算力云10 分钟前
Second Me重磅升级:全平台Docker部署+OpenAI协议兼容
人工智能
Kenley13 分钟前
MTP(Multi-Token Prediction)
人工智能
链诸葛14 分钟前
Smart AI:在AI浪潮中崛起的智能NFT生态革命者
人工智能
京东零售技术16 分钟前
打破"沙漏“现象→提高生成式搜索/推荐的上限
人工智能
潦草通信狗21 分钟前
Joint communication and state sensing under logarithmic loss
人工智能·深度学习·算法·机器学习·信号处理·信息论·通信感知一体化