使用Python将YOLO的XML标注文件转换为TXT文件格式

使用Python将YOLO的XML标注文件转换为TXT文件格式,并划分数据集

python 复制代码
import xml.etree.ElementTree as ET
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile
from PIL import Image

# 只要改下面的CLASSES和PATH就可以了,其他的不用改,这个脚本会自动划分数据集,生成YOLO格式的标签文件

# 分类名称  这里改成数据集的分类名称,一定要改!!!请查看数据集目录下的txt文件
CLASSES = ["car", "person"]
# 数据集目录 这里改成数据集的根目录,VOC目录下有两个文件夹Annotations和JPEGImages,一定要改!!!
PATH = r'D:\\VOC\\'
# 训练集占比80% 训练集:验证集=8:2 这里划分数据集 不用改
TRAIN_RATIO = 80


def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    # Assuming the image format is jpg
    image_path = os.path.join(image_dir, f"{image_id}.jpg")
    img = Image.open(image_path)
    w, h = img.size
    in_file = open(PATH+'/Annotations/%s.xml' % image_id, encoding='utf-8')
    out_file = open(PATH+'/YOLOLabels/%s.txt' %
                    image_id, 'w', encoding='utf-8')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    # w = int(size.find('width').text)
    # h = int(size.find('height').text)
    difficult = 0
    for obj in root.iter('object'):
        if obj.find('difficult'):
            difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in CLASSES or int(difficult) == 1:
            continue
        cls_id = CLASSES.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " +
                       " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()


wd = os.getcwd()
wd = os.getcwd()

work_sapce_dir = os.path.join(wd, PATH+"/")

annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
    os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
    os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
    os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)

yolov5_train_dir = os.path.join(work_sapce_dir, "train/")
if not os.path.isdir(yolov5_train_dir):
    os.mkdir(yolov5_train_dir)
clear_hidden_files(yolov5_train_dir)
yolov5_images_train_dir = os.path.join(yolov5_train_dir, "images/")
if not os.path.isdir(yolov5_images_train_dir):
    os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_labels_train_dir = os.path.join(yolov5_train_dir, "labels/")
if not os.path.isdir(yolov5_labels_train_dir):
    os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)

yolov5_test_dir = os.path.join(work_sapce_dir, "val/")
if not os.path.isdir(yolov5_test_dir):
    os.mkdir(yolov5_test_dir)
clear_hidden_files(yolov5_test_dir)
yolov5_images_test_dir = os.path.join(yolov5_test_dir, "images/")
if not os.path.isdir(yolov5_images_test_dir):
    os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_test_dir = os.path.join(yolov5_test_dir, "labels/")
if not os.path.isdir(yolov5_labels_test_dir):
    os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)


train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w', encoding='utf-8')
test_file = open(os.path.join(wd, "yolov5_valid.txt"), 'w', encoding='utf-8')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a', encoding='utf-8')
test_file = open(os.path.join(wd, "yolov5_valid.txt"), 'a', encoding='utf-8')
list_imgs = os.listdir(image_dir)  # list image files
prob = random.randint(1, 100)
print("数据集: %d个" % len(list_imgs))
for i in range(0, len(list_imgs)):
    path = os.path.join(image_dir, list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(
            os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(
            os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    prob = random.randint(1, 100)
    print("Probability: %d" % prob, i, list_imgs[i])
    if (prob < TRAIN_RATIO):
        # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_train_dir + voc_path)
            copyfile(label_path, yolov5_labels_train_dir + label_name)
    else:
        # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_test_dir + voc_path)
            copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()

以上代码需要修改:CLASSES变量为自己的类别,修改PATH变量为自己的数据集目录。

相关推荐
Lee魅儿36 分钟前
ffmpeg webm 透明通道视频转成rgba图片
python·ffmpeg
Bi8bo742 分钟前
Python编程基础
开发语言·python
项目題供诗44 分钟前
黑马python(七)
python
要努力啊啊啊1 小时前
YOLOv5 模型结构详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
是紫焅呢1 小时前
N数据分析pandas基础.py
python·青少年编程·数据挖掘·数据分析·pandas·学习方法·visual studio code
胖墩会武术2 小时前
Black自动格式化工具
python·格式化·black
struggle20252 小时前
DIPLOMAT开源程序是基于深度学习的身份保留标记对象多动物跟踪(测试版)
人工智能·python·深度学习
发现你走远了2 小时前
什么是状态机?状态机入门
python·状态机
可能是猫猫人4 小时前
【Python打卡Day39】图像数据与显存 @浙大疏锦行
开发语言·python
爬虫程序猿4 小时前
利用 Python 爬虫获取 Amazon 商品详情:实战指南
开发语言·爬虫·python