使用Python将YOLO的XML标注文件转换为TXT文件格式

使用Python将YOLO的XML标注文件转换为TXT文件格式,并划分数据集

python 复制代码
import xml.etree.ElementTree as ET
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile
from PIL import Image

# 只要改下面的CLASSES和PATH就可以了,其他的不用改,这个脚本会自动划分数据集,生成YOLO格式的标签文件

# 分类名称  这里改成数据集的分类名称,一定要改!!!请查看数据集目录下的txt文件
CLASSES = ["car", "person"]
# 数据集目录 这里改成数据集的根目录,VOC目录下有两个文件夹Annotations和JPEGImages,一定要改!!!
PATH = r'D:\\VOC\\'
# 训练集占比80% 训练集:验证集=8:2 这里划分数据集 不用改
TRAIN_RATIO = 80


def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    # Assuming the image format is jpg
    image_path = os.path.join(image_dir, f"{image_id}.jpg")
    img = Image.open(image_path)
    w, h = img.size
    in_file = open(PATH+'/Annotations/%s.xml' % image_id, encoding='utf-8')
    out_file = open(PATH+'/YOLOLabels/%s.txt' %
                    image_id, 'w', encoding='utf-8')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    # w = int(size.find('width').text)
    # h = int(size.find('height').text)
    difficult = 0
    for obj in root.iter('object'):
        if obj.find('difficult'):
            difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in CLASSES or int(difficult) == 1:
            continue
        cls_id = CLASSES.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " +
                       " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()


wd = os.getcwd()
wd = os.getcwd()

work_sapce_dir = os.path.join(wd, PATH+"/")

annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
    os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
    os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
    os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)

yolov5_train_dir = os.path.join(work_sapce_dir, "train/")
if not os.path.isdir(yolov5_train_dir):
    os.mkdir(yolov5_train_dir)
clear_hidden_files(yolov5_train_dir)
yolov5_images_train_dir = os.path.join(yolov5_train_dir, "images/")
if not os.path.isdir(yolov5_images_train_dir):
    os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_labels_train_dir = os.path.join(yolov5_train_dir, "labels/")
if not os.path.isdir(yolov5_labels_train_dir):
    os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)

yolov5_test_dir = os.path.join(work_sapce_dir, "val/")
if not os.path.isdir(yolov5_test_dir):
    os.mkdir(yolov5_test_dir)
clear_hidden_files(yolov5_test_dir)
yolov5_images_test_dir = os.path.join(yolov5_test_dir, "images/")
if not os.path.isdir(yolov5_images_test_dir):
    os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_test_dir = os.path.join(yolov5_test_dir, "labels/")
if not os.path.isdir(yolov5_labels_test_dir):
    os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)


train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w', encoding='utf-8')
test_file = open(os.path.join(wd, "yolov5_valid.txt"), 'w', encoding='utf-8')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a', encoding='utf-8')
test_file = open(os.path.join(wd, "yolov5_valid.txt"), 'a', encoding='utf-8')
list_imgs = os.listdir(image_dir)  # list image files
prob = random.randint(1, 100)
print("数据集: %d个" % len(list_imgs))
for i in range(0, len(list_imgs)):
    path = os.path.join(image_dir, list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(
            os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(
            os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    prob = random.randint(1, 100)
    print("Probability: %d" % prob, i, list_imgs[i])
    if (prob < TRAIN_RATIO):
        # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_train_dir + voc_path)
            copyfile(label_path, yolov5_labels_train_dir + label_name)
    else:
        # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_test_dir + voc_path)
            copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()

以上代码需要修改:CLASSES变量为自己的类别,修改PATH变量为自己的数据集目录。

相关推荐
阿桂天山几秒前
实现批量图片文字识别(python+flask+EasyOCR)
开发语言·python·flask
ttumetai2 分钟前
MacOS中安装Python(homebrew,pyenv)
python·macos
徐凤年_2 分钟前
Ubuntu20.04下GraspNet复现流程中的问题
linux·python·ubuntu·ai
天天进步20157 分钟前
Python跨平台桌面应用程序开发
开发语言·python
勇敢牛牛@21 分钟前
Python flask入门
开发语言·python·flask
桥Dopey1 小时前
Python常用的第三方模块之【jieba库】支持三种分词模式:精确模式、全模式和搜索引擎模式(提高召回率)
人工智能·python·分词模式
亚力山大抵1 小时前
实验2 python的TCP群聊系统实现
服务器·python·tcp/ip
想学好英文的ikun1 小时前
【MCP】第二篇:IDE革命——用MCP构建下一代智能工具链
ide·人工智能·python·ai·个人开发·mcp
凌叁儿1 小时前
从零开始搭建Django博客③--前端界面实现
前端·python·django
埃菲尔铁塔_CV算法1 小时前
YOLO 模型的深度剖析及其在生物医药领域的创新应用
深度学习·神经网络·yolo·目标检测·计算机视觉