机器学习入门(一)什么是机器学习

什么是人工智能

人工智能,也称机器智能,指由人制造出来的机器所表现出来的智能。人工智能的核心问题包括构建能够跟人类类似甚至超越的推理、知识、规范、学习、交流、感知、移物等能力。简单来说,人工智能就是机器对人的思维或行动过程的模拟,让它能像人一样思考或行动,解决一系列通用的问题,这是最初设想的"强"人工智能,也被称为通用人工智能(AGI)。

但是目前机器不具备真正推理和解决复杂问题的能力,并且只能解决部分问题,当前人工智能被称为"弱"人工智能。

人工智能的实现方法

人工智能的实现方法主要有两种,分别是符号学习机器学习

  • 符号学习:基于逻辑与规则的学习方法。
  • 机器学习:从数据中寻找规律、建立关系,根据建立的关系去解决问题的方法。

从图中可以看到,之前最火的深度学习就是属于机器学习的范畴。

机器学习

机器学习主要是指通过算法让机器从数据中自动学习规律,而无需显式编程。机器学习主要分为四种:

监督学习(Supervised Learning):训练数据包括正确的结果

监督学习算法就是预测输入-输出,或者x到y的映射。根据输入的x,给出结果的y。机器学习会从这些输入的x,以及输出的y中学习,当你输入一个全新的x时,并尝试生成适合的输出y。

常见的监督学习算法有:回归算法、分类算法。

无监督学习(UnSupervised Learning):训练数据不包括正确的结果

在无监督学习中,没有任何输出y的信息,只有输入x的信息。无监督学习的作用是找出数据中可能有趣或者存在的模式或者结构。

常见的无监督学习的算法有:聚类算法

半监督学习(Semi-supervised Learning):训练数据包括少量正确的结果

结合少量带标签数据 和大量无标签数据进行训练,适用于标注成本高但未标注数据丰富的场景。

强化学习(Reinforcement Learning)根据每一次结果收获的奖惩进行学习,实现优化

通过智能体与环境的交互 进行学习,智能体根据环境反馈的奖励信号调整行为策略,以最大化长期累积奖励。

相关推荐
东莞呵呵1 小时前
吴恩达机器学习(1)——机器学习算法分类
算法·机器学习·分类
小技工丨3 小时前
LLaMA-Factory:环境准备
机器学习·大模型·llama·llama-factory
聚客AI4 小时前
ChatGPT到Claude全适配:跨模型Prompt高级设计规范与迁移技巧
人工智能·机器学习·语言模型·自然语言处理·langchain·transformer·llama
phoenix@Capricornus10 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
田梓燊10 小时前
数学复习笔记 19
笔记·线性代数·机器学习
输出输入12 小时前
量化用到的机器学习书籍推荐
机器学习
深度学习入门13 小时前
学习深度学习是否要先学习机器学习?
人工智能·深度学习·神经网络·学习·机器学习·ai·深度学习入门
willhu200813 小时前
Tensorflow2保存和加载模型
深度学习·机器学习·tensorflow
Humbunklung14 小时前
从数据层面减少过拟合现象
机器学习
Blossom.11815 小时前
从虚拟现实到混合现实:沉浸式体验的未来之路
人工智能·目标检测·机器学习·计算机视觉·语音识别·vr·mr