机器学习入门(一)什么是机器学习

什么是人工智能

人工智能,也称机器智能,指由人制造出来的机器所表现出来的智能。人工智能的核心问题包括构建能够跟人类类似甚至超越的推理、知识、规范、学习、交流、感知、移物等能力。简单来说,人工智能就是机器对人的思维或行动过程的模拟,让它能像人一样思考或行动,解决一系列通用的问题,这是最初设想的"强"人工智能,也被称为通用人工智能(AGI)。

但是目前机器不具备真正推理和解决复杂问题的能力,并且只能解决部分问题,当前人工智能被称为"弱"人工智能。

人工智能的实现方法

人工智能的实现方法主要有两种,分别是符号学习机器学习

  • 符号学习:基于逻辑与规则的学习方法。
  • 机器学习:从数据中寻找规律、建立关系,根据建立的关系去解决问题的方法。

从图中可以看到,之前最火的深度学习就是属于机器学习的范畴。

机器学习

机器学习主要是指通过算法让机器从数据中自动学习规律,而无需显式编程。机器学习主要分为四种:

监督学习(Supervised Learning):训练数据包括正确的结果

监督学习算法就是预测输入-输出,或者x到y的映射。根据输入的x,给出结果的y。机器学习会从这些输入的x,以及输出的y中学习,当你输入一个全新的x时,并尝试生成适合的输出y。

常见的监督学习算法有:回归算法、分类算法。

无监督学习(UnSupervised Learning):训练数据不包括正确的结果

在无监督学习中,没有任何输出y的信息,只有输入x的信息。无监督学习的作用是找出数据中可能有趣或者存在的模式或者结构。

常见的无监督学习的算法有:聚类算法

半监督学习(Semi-supervised Learning):训练数据包括少量正确的结果

结合少量带标签数据 和大量无标签数据进行训练,适用于标注成本高但未标注数据丰富的场景。

强化学习(Reinforcement Learning)根据每一次结果收获的奖惩进行学习,实现优化

通过智能体与环境的交互 进行学习,智能体根据环境反馈的奖励信号调整行为策略,以最大化长期累积奖励。

相关推荐
毕设源码-钟学长7 小时前
【开题答辩全过程】以 基于协同过滤推荐算法的小说漫画网站设计与实现为例,包含答辩的问题和答案
算法·机器学习·推荐算法
渡我白衣7 小时前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
【赫兹威客】浩哥7 小时前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习
Yeats_Liao8 小时前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
大山同学16 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
陈天伟教授17 小时前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
板面华仔18 小时前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
源于花海18 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
机 _ 长18 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习
龙山云仓19 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene