什么是人工智能
人工智能,也称机器智能,指由人制造出来的机器所表现出来的智能。人工智能的核心问题包括构建能够跟人类类似甚至超越的推理、知识、规范、学习、交流、感知、移物等能力。简单来说,人工智能就是机器对人的思维或行动过程的模拟,让它能像人一样思考或行动,解决一系列通用的问题,这是最初设想的"强"人工智能,也被称为通用人工智能(AGI)。
但是目前机器不具备真正推理和解决复杂问题的能力,并且只能解决部分问题,当前人工智能被称为"弱"人工智能。
人工智能的实现方法
人工智能的实现方法主要有两种,分别是符号学习 和机器学习:
- 符号学习:基于逻辑与规则的学习方法。
- 机器学习:从数据中寻找规律、建立关系,根据建立的关系去解决问题的方法。

从图中可以看到,之前最火的深度学习就是属于机器学习的范畴。
机器学习
机器学习主要是指通过算法让机器从数据中自动学习规律,而无需显式编程。机器学习主要分为四种:
监督学习(Supervised Learning):训练数据包括正确的结果
监督学习算法就是预测输入-输出,或者x到y的映射。根据输入的x,给出结果的y。机器学习会从这些输入的x,以及输出的y中学习,当你输入一个全新的x时,并尝试生成适合的输出y。
常见的监督学习算法有:回归算法、分类算法。
无监督学习(UnSupervised Learning):训练数据不包括正确的结果
在无监督学习中,没有任何输出y的信息,只有输入x的信息。无监督学习的作用是找出数据中可能有趣或者存在的模式或者结构。
常见的无监督学习的算法有:聚类算法
半监督学习(Semi-supervised Learning):训练数据包括少量正确的结果
结合少量带标签数据 和大量无标签数据进行训练,适用于标注成本高但未标注数据丰富的场景。
强化学习(Reinforcement Learning)根据每一次结果收获的奖惩进行学习,实现优化
通过智能体与环境的交互 进行学习,智能体根据环境反馈的奖励信号调整行为策略,以最大化长期累积奖励。