机器学习入门(一)什么是机器学习

什么是人工智能

人工智能,也称机器智能,指由人制造出来的机器所表现出来的智能。人工智能的核心问题包括构建能够跟人类类似甚至超越的推理、知识、规范、学习、交流、感知、移物等能力。简单来说,人工智能就是机器对人的思维或行动过程的模拟,让它能像人一样思考或行动,解决一系列通用的问题,这是最初设想的"强"人工智能,也被称为通用人工智能(AGI)。

但是目前机器不具备真正推理和解决复杂问题的能力,并且只能解决部分问题,当前人工智能被称为"弱"人工智能。

人工智能的实现方法

人工智能的实现方法主要有两种,分别是符号学习机器学习

  • 符号学习:基于逻辑与规则的学习方法。
  • 机器学习:从数据中寻找规律、建立关系,根据建立的关系去解决问题的方法。

从图中可以看到,之前最火的深度学习就是属于机器学习的范畴。

机器学习

机器学习主要是指通过算法让机器从数据中自动学习规律,而无需显式编程。机器学习主要分为四种:

监督学习(Supervised Learning):训练数据包括正确的结果

监督学习算法就是预测输入-输出,或者x到y的映射。根据输入的x,给出结果的y。机器学习会从这些输入的x,以及输出的y中学习,当你输入一个全新的x时,并尝试生成适合的输出y。

常见的监督学习算法有:回归算法、分类算法。

无监督学习(UnSupervised Learning):训练数据不包括正确的结果

在无监督学习中,没有任何输出y的信息,只有输入x的信息。无监督学习的作用是找出数据中可能有趣或者存在的模式或者结构。

常见的无监督学习的算法有:聚类算法

半监督学习(Semi-supervised Learning):训练数据包括少量正确的结果

结合少量带标签数据 和大量无标签数据进行训练,适用于标注成本高但未标注数据丰富的场景。

强化学习(Reinforcement Learning)根据每一次结果收获的奖惩进行学习,实现优化

通过智能体与环境的交互 进行学习,智能体根据环境反馈的奖励信号调整行为策略,以最大化长期累积奖励。

相关推荐
荼蘼1 小时前
基于 KNN 算法的手写数字识别项目实践
人工智能·算法·机器学习
旧时光巷4 小时前
【机器学习-2】 | 决策树算法基础/信息熵
算法·决策树·机器学习·id3算法·信息熵·c4.5算法
落了一地秋5 小时前
4.5 优化器中常见的梯度下降算法
人工智能·算法·机器学习
山烛6 小时前
KNN 算法中的各种距离:从原理到应用
人工智能·python·算法·机器学习·knn·k近邻算法·距离公式
青春不败 177-3266-052010 小时前
MATLAB近红外光谱分析技术及实践技术应用
随机森林·机器学习·支持向量机·matlab·卷积神经网络·遗传算法·近红外光谱
NeoFii16 小时前
Day 22: 复习
机器学习
巫婆理发22217 小时前
强化学习(第三课第三周)
python·机器学习·深度神经网络
Blossom.11819 小时前
基于深度学习的图像分类:使用Capsule Networks实现高效分类
人工智能·python·深度学习·神经网络·机器学习·分类·数据挖掘
Coovally AI模型快速验证20 小时前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
GG向前冲1 天前
机器学习对中特估股票关键特征选取的应用与研究
人工智能·机器学习·投资组合