机器学习入门(一)什么是机器学习

什么是人工智能

人工智能,也称机器智能,指由人制造出来的机器所表现出来的智能。人工智能的核心问题包括构建能够跟人类类似甚至超越的推理、知识、规范、学习、交流、感知、移物等能力。简单来说,人工智能就是机器对人的思维或行动过程的模拟,让它能像人一样思考或行动,解决一系列通用的问题,这是最初设想的"强"人工智能,也被称为通用人工智能(AGI)。

但是目前机器不具备真正推理和解决复杂问题的能力,并且只能解决部分问题,当前人工智能被称为"弱"人工智能。

人工智能的实现方法

人工智能的实现方法主要有两种,分别是符号学习机器学习

  • 符号学习:基于逻辑与规则的学习方法。
  • 机器学习:从数据中寻找规律、建立关系,根据建立的关系去解决问题的方法。

从图中可以看到,之前最火的深度学习就是属于机器学习的范畴。

机器学习

机器学习主要是指通过算法让机器从数据中自动学习规律,而无需显式编程。机器学习主要分为四种:

监督学习(Supervised Learning):训练数据包括正确的结果

监督学习算法就是预测输入-输出,或者x到y的映射。根据输入的x,给出结果的y。机器学习会从这些输入的x,以及输出的y中学习,当你输入一个全新的x时,并尝试生成适合的输出y。

常见的监督学习算法有:回归算法、分类算法。

无监督学习(UnSupervised Learning):训练数据不包括正确的结果

在无监督学习中,没有任何输出y的信息,只有输入x的信息。无监督学习的作用是找出数据中可能有趣或者存在的模式或者结构。

常见的无监督学习的算法有:聚类算法

半监督学习(Semi-supervised Learning):训练数据包括少量正确的结果

结合少量带标签数据 和大量无标签数据进行训练,适用于标注成本高但未标注数据丰富的场景。

强化学习(Reinforcement Learning)根据每一次结果收获的奖惩进行学习,实现优化

通过智能体与环境的交互 进行学习,智能体根据环境反馈的奖励信号调整行为策略,以最大化长期累积奖励。

相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
郄堃Deep Traffic5 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天6 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
小喵喵生气气7 小时前
Python60日基础学习打卡Day46
深度学习·机器学习
大写-凌祁9 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号9 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
C137的本贾尼11 小时前
(每日一道算法题)二叉树剪枝
算法·机器学习·剪枝
Blossom.11811 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
Lilith的AI学习日记12 小时前
什么是预训练?深入解读大模型AI的“高考集训”
开发语言·人工智能·深度学习·神经网络·机器学习·ai编程
我不是小upper13 小时前
SVM超详细原理总结
人工智能·机器学习·支持向量机