Spark-SQL核心编程

  1. Spark-SQL数据加载与保存
  • 通用方式:加载使用 spark.read.load ,可通过 format("...") 指定数据类型 , load("...") 传入数据路径, option("...") 设置JDBC参数。保存用 df.write.save ,同样可指定类型、路径和JDBC参数,还能通过 mode() 设置 SaveMode 处理已存在文件。

  • Parquet格式:Spark SQL默认数据源,加载和保存操作简单,无需 format 指定,修改 spark.sql.sources.default 可更改默认格式。

  • JSON格式:能自动推测结构加载为 Dataset[Row] ,读取的JSON文件每行应为JSON串。

  • CSV格式:可配置列表信息,通过设置 sep inferSchema header 等选项读取,第一行设为数据列。

  • MySQL:借助JDBC读取和写入数据。读取时导入 mysql-connector-java 依赖,可使用 spark.read.format("jdbc") 多种形式;写入时先创建数据集,再按JDBC格式设置参数并指定 SaveMode 保存。

  1. Spark-SQL连接Hive
  • 内嵌Hive:使用方便,直接可用,但实际生产中很少使用。

  • 外部Hive:在 spark-shell 连接需拷贝 hive-site.xml core-site.xml hdfs-site.xml 到 conf/ 目录,将 hive-site.xml 中 localhost 改为实际节点名,拷贝MySQL驱动到 jars/ 目录,最后重启 spark-shell 。

  • Spark beeline:Spark Thrift Server兼容HiveServer2,部署后可用 beeline 访问。连接步骤与连接外部Hive类似,还需启动Thrift Server,用 beeline -u jdbc:hive2://node01:10000 -n root 连接。

  • Spark-SQL CLI:可本地运行Hive元数据服务并执行查询。操作时将MySQL驱动放入 jars/ , hive-site.xml 放入 conf/ ,运行 bin/ 目录下的 spark-sql.cmd 。

  • 代码操作Hive:先导入 spark-hive_2.12 和 hive-exec 依赖,拷贝 hive-site.xml 到项目 resources 目录,代码中启用Hive支持。若遇权限问题,可设置 System.setProperty("HADOOP_USER_NAME", "node01") ,还可修改数据库仓库地址 。

相关推荐
华农DrLai18 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
uesowys1 天前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
鹏说大数据1 天前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人1 天前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人1 天前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
Lansonli2 天前
大数据Spark(八十):Action行动算子fold和aggregate使用案例
大数据·分布式·spark
鸿乃江边鸟3 天前
Spark Datafusion Comet 向量化Rust Native--CometShuffleExchangeExec怎么控制读写
大数据·rust·spark·native
伟大的大威4 天前
NVIDIA DGX Spark (ARM64/Blackwell) Kubernetes 集群 + GPU Operator 完整部署指南
大数据·spark·kubernetes
小邓睡不饱耶4 天前
深度实战:Spark GraphX构建用户信任网络,精准锁定高价值目标用户(含完整案例)
大数据·spark·php
B站计算机毕业设计超人4 天前
计算机毕业设计hadoop+spark+hive共享单车预测系统 共享单车数据可视化分析 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·python·深度学习·spark·毕业设计·课程设计