Linux下python 调用c++动态库的方法
1.1 简单快速的demo
创建一个 example.cpp的源文件
cpp
// example.cpp
extern "C" {
void hello() {
printf("Hello from C++!\n");
}
}
编译产生动态库
g++ -shared -fPIC example.cpp -o libexample.so
python 调用该库
python
import ctypes
# 加载动态库
lib = ctypes.CDLL('./libexample.so')
# 调用函数
lib.hello()
1.2 复杂传参数的方法
参考链接:https://zhuanlan.zhihu.com/p/466169852 指针类的传入传出
可以直接使用的demo,实现的功能为使用python传入一张图像,使用c++处理后,得到图像处理后的图像传送给python。创建一个cpp的内容如下:
cpp
// imageprocessor.c
#include <opencv2/opencv.hpp>
#include <iostream>
#include <string>
extern "C" {
// 函数声明,用于处理图像并返回图像数据
void processimage(unsigned char* inputdata, int height, int width, int channels, unsigned char** outputdata, int* outputsize);
}
void processimage(unsigned char* inputdata, int height, int width, int channels, unsigned char** outputdata, int* outputsize) {
// 从输入数据创建OpenCV图像
cv::Mat inputimage(height, width, CV_8UC(channels), inputdata);
std::string outputPath = "/home/ema/zzh/000000input.bmp";
imwrite(outputPath,inputimage);
// 处理图像
cv::Mat processedimage;
cv::cvtColor(inputimage, processedimage, cv::COLOR_BGR2GRAY); // 示例处理:转换为灰度图像
// 分配输出数据内存
*outputsize = processedimage.total() * processedimage.elemSize();
*outputdata = new unsigned char[*outputsize];
std::memcpy(*outputdata, processedimage.data, *outputsize);
}
// 注意:需要提供一个函数来释放由C代码分配的内存
extern "C" {
void free_memory(unsigned char* data);
}
void free_memory(unsigned char* data) {
delete[] data;
}
编译文件的内容为,使用该文件可以编译成动态库。
bash
cmake_minimum_required(VERSION 3.0.0)
project(HalconDemo VERSION 0.1.0)
set(TARGET_NAME HalconDemo)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED True)
set(CMAKE_CXX_EXTENSIONS OFF)
set(OpenCV_DIR "/usr/local/opencv470") # 根据实际安装路径修改
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
# 添加头文件搜索路径
include_directories(include)
link_directories(/opt/halcon/lib/aarch64-linux)
aux_source_directory(. SRCS )
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -static-libstdc++ -fPIC -Wl,--copy-dt-needed-entries -Wno-error=deprecated-declarations -Wno-deprecated-declarations ")
# 寻找./src下面所有.cpp为后缀的源文件,并且保存到SRC变量里面
file(GLOB_RECURSE SRC ./src/*.cpp)
# 编译SRC变量存储的源文件,编译生成目标文件命名为hello
#add_executable(hello ${SRC})
add_library(hello SHARED src/HalconDemo.cpp)
target_link_libraries(hello halcon halconcpp hdevenginecpp)
target_link_libraries(hello ${OpenCV_LIBS})
python调用的程序为:
python
import cv2
import numpy as np
from ctypes import cdll, c_char_p, c_int, POINTER
from ctypes import c_char
import ctypes
# 加载C库
imageprocessorlib = cdll.LoadLibrary('/libhello.so')
# 设置C函数的参数类型
imageprocessorlib.processimage.argtypes = [POINTER(c_char), c_int, c_int, c_int, ctypes.POINTER(ctypes.POINTER(ctypes.c_ubyte)), POINTER(c_int)]
# 设置C函数的返回类型
imageprocessorlib.processimage.restype = None
imageprocessorlib.free_memory.argtypes = [ctypes.POINTER(ctypes.c_ubyte)]
imageprocessorlib.free_memory.restype = None
def processimage(inputimage):
height, width, channels = inputimage.shape
inputdata = inputimage.ctypes.data_as(POINTER(c_char))
# # 输出数据指针和大小
# outputdata = POINTER(c_char)()
# outputsize = c_int(0)
output_data = ctypes.POINTER(ctypes.c_ubyte)()
output_size = ctypes.c_int()
# 调用C函数处理图像
imageprocessorlib.processimage(inputdata, height, width, channels, output_data, output_size)
if output_data and output_size.value > 0:
# 将字节数组转换为NumPy数组
image_array = np.ctypeslib.as_array((ctypes.c_ubyte * output_size.value).from_address(ctypes.addressof(output_data.contents)), shape=(output_size.value,))
# 假设图像是灰度的,根据实际处理调整形状
# height, width = 2048, 3072 # 你需要根据实际图像尺寸来设置这些值
image = image_array.reshape((height, width))
cv2.imwrite(r'/draw_ori_testopencv.bmp',image)
# 释放C代码分配的内存
imageprocessorlib.free_memory(output_data)
return image
else:
return None
# 使用函数
if __name__ == '__main__':
# 读取图像
inputimage = cv2.imread('/images/9.bmp')
# 处理图像
processedimage = processimage(inputimage)
# if processedimage is not None:
# # 显示图像
# cv2.imshow('Processed Image', processedimage)
# cv2.waitKey(0)
# cv2.destroyAllWindows()