【论文阅读】-周总结-第5周

1. 【论文阅读24】并行 TCN-LSTM 风电预测模型(2024-02)

链接

论文信息

Liu S, Xu T, Du X, et al. A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction. Energy Conversion and Management, 2024, 302: 118122.

内容总结

  • 本文提出并验证了一种用于风电功率预测的新型混合深度学习模型。
  • 核心思路是基于并行结构TCN-LSTM 模型,结合Savitzky-Golay (SG) 滤波器进行数据预处理。
  • 通过SG滤波器去噪,提升输入数据质量,再利用并行TCN和LSTM提取时序特征,最终提高了风电功率预测的准确率。
  • 实验表明,所提方法在多个真实风电场数据集上均优于传统方法和单一模型。

2. 【论文阅读25】PFTF方法:滑坡失稳时间预测(2023)

链接

论文信息

Leinauer J, Weber S, Cicoira A, et al. An approach for prospective forecasting of rock slope failure time. Communications Earth & Environment, 2023, 4(1): 253.

内容总结

  • 本文提出了一种前瞻性失稳时间预测方法(PFTF),适用于滑坡、冰崩等地质灾害的实时或准实时失稳预测。
  • 方法基于改进的反速度法(Inverse Velocity Method) ,结合:
    • 多窗口平滑处理噪声;
    • 迭代更新预测结果;
    • 自动识别加速起点(Onset of Acceleration, OOA)
  • 相比传统方法,PFTF能够在灾害发生前更早、更准确地预测失稳时间,提高了预警系统的实用性。

3. 【贝叶斯定理01】白话贝叶斯(原理篇)

链接

学习笔记

  • 以通俗易懂的方式介绍了贝叶斯定理的基本概念和推导过程。

  • 核心公式为:

    P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)P(A)

  • 重点理解了:

    • 先验概率、后验概率、似然函数的概念;
    • 贝叶斯推断在实际问题中的应用,比如医疗诊断、故障检测等。

小结

  • 本周在时间序列预测 (TCN-LSTM)、灾害失稳预测 (PFTF)、贝叶斯推断基础这三个方向上进行了学习和积累。
相关推荐
觉醒大王1 天前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
觉醒大王1 天前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
张较瘦_1 天前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
m0_650108242 天前
IntNet:面向协同自动驾驶的通信驱动多智能体强化学习框架
论文阅读·marl·多智能体系统·网联自动驾驶·意图共享·自适应通讯·端到端协同
m0_650108242 天前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
快降重科研小助手2 天前
前瞻与规范:AIGC降重API的技术演进与负责任使用
论文阅读·aigc·ai写作·降重·降ai·快降重
源于花海3 天前
IEEE TIE期刊论文学习——基于元学习与小样本重训练的锂离子电池健康状态估计方法
论文阅读·元学习·电池健康管理·并行网络·小样本重训练
m0_650108243 天前
UniDrive-WM:自动驾驶领域的统一理解、规划与生成世界模型
论文阅读·自动驾驶·轨迹规划·感知、规划与生成融合·场景理解·未来图像生成
蓝田生玉1233 天前
LLaMA论文阅读笔记
论文阅读·笔记·llama
*西瓜3 天前
基于深度学习的视觉水位识别技术与装备
论文阅读·深度学习