计算机视觉图像识别16.1-停车位识别的图像预处理

本章节完成停车场监控视频中停车位实时情况的动态识别。

首先,来做图像的预处理。

下面的两张图片是从一段停车场监控中截取的视频截图:

首先,我们来定义函数select_rgb_white_yellow,用于从函数中提取白色和黄色区域,并把处理后的图像进行返回。

设置颜色范围:lower 表示最低 RGB 值 [120,120,120],upper 表示最高 RGB 值 [255,255,255]。

使用 cv2.inRange 创建一个白色掩码 white_mask,筛选出图像中在指定 RGB 范围内的像素。

调用 self.cv_show 显示白色掩码图像。

使用 cv2.bitwise_and 将原始图像与白色掩码结合,生成仅包含白色区域的图像 masked。

调用 self.cv_show 显示处理后的图像。
登录后复制

plain 复制代码
def select_rgb_white_yellow(self,image):
        lower = np.array([120,120,120])
        upper = np.array([255,255,255])
        white_mask = cv2.inRange(image,lower,upper)
        self.cv_show('white_mask',white_mask)

        masked = cv2.bitwise_and(image,image,mask=white_mask)
        self.cv_show('masked',masked)
        return masked

然后进行停车场图像的轮廓提取。
登录后复制

plain 复制代码
def convert_gray_scale(self,image):
        return cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

    def detect_edges(self,image,low_threshold=50,high_threshold=200):
        return cv2.Canny(image,low_threshold,high_threshold)

通过以下方式调用:
登录后复制

plain 复制代码
gray_images = list(map(park.convert_gray_scale,white_yellow_images))
    park.show_img(gray_images)

    edge_images = list(map(lambda image:park.detect_edges(image),gray_images))
    park.show_img(edge_images)

接下来,把关注重心放在停车场区域,无关紧要的范围进行删除。

大致标定停车场轮廓角点:
登录后复制

plain 复制代码
def select_region(self, image):
        # first, define the polygon by vertices
        rows, cols = image.shape[:2]
        pt_1 = [cols * 0.05, rows * 0.90]
        pt_2 = [cols * 0.05, rows * 0.70]
        pt_3 = [cols * 0.30, rows * 0.55]
        pt_4 = [cols * 0.6, rows * 0.15]
        pt_5 = [cols * 0.90, rows * 0.15]
        pt_6 = [cols * 0.90, rows * 0.90]

        vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]], dtype=np.int32)
        point_img = image.copy()
        point_img = cv2.cvtColor(point_img, cv2.COLOR_GRAY2RGB)
        for point in vertices[0]:
            cv2.circle(point_img, (point[0], point[1]), 10, (0, 0, 255), 4)
        self.cv_show('point_img', point_img)

        return self.filter_region(image, vertices)

把无关区域剪除掉:
登录后复制

plain 复制代码
def filter_region(self, image, vertices):
        mask = np.zeros_like(image)
        if len(mask.shape) ==2:
            cv2.fillPoly(mask, vertices, 255)
            self.cv_show('mask', mask)
        return cv2.bitwise_and(image, mask)

调用方法:
登录后复制

plain 复制代码
roi_images = list(map(park.select_region,edge_images))
park.show_img(roi_images)

调用结果:

相关推荐
EasyDSS几秒前
国标GB28181视频平台EasyGBS在物业视频安防管理服务中的应用方案
网络·人工智能
陈奕昆4 分钟前
1.1探索 LLaMA-Factory:大模型微调的一站式解决方案
人工智能·llama·大模型微调
winner88819 分钟前
从 BERT 到 GPT:Encoder 的 “全局视野” 如何喂饱 Decoder 的 “逐词纠结”
人工智能·gpt·bert·encoder·decoder
Swee143 分钟前
应对过度处方挑战:为药物推荐任务微调大语言模型(Xiangnan He)
人工智能·语言模型·自然语言处理
dog2501 小时前
BBR 的 RTT 公平性问题求解
人工智能·算法·机器学习
莱茶荼菜1 小时前
SIFT特征点检测
人工智能·深度学习·计算机视觉
荷塘阅色2 小时前
【机器学习】人工智能在电力电子领域的应用
人工智能·机器学习·电力电子
James. 常德 student2 小时前
长短期记忆网络(LSTM)
人工智能·rnn·lstm
2401_890236042 小时前
艺术与科技的双向奔赴——高一鑫荣获加州联合表彰
人工智能·科技
LIUDAN'S WORLD2 小时前
OpenCV 图像处理核心技术 (第二部分)
图像处理·opencv·计算机视觉