计算机视觉图像识别16.1-停车位识别的图像预处理

本章节完成停车场监控视频中停车位实时情况的动态识别。

首先,来做图像的预处理。

下面的两张图片是从一段停车场监控中截取的视频截图:

首先,我们来定义函数select_rgb_white_yellow,用于从函数中提取白色和黄色区域,并把处理后的图像进行返回。

设置颜色范围:lower 表示最低 RGB 值 [120,120,120],upper 表示最高 RGB 值 [255,255,255]。

使用 cv2.inRange 创建一个白色掩码 white_mask,筛选出图像中在指定 RGB 范围内的像素。

调用 self.cv_show 显示白色掩码图像。

使用 cv2.bitwise_and 将原始图像与白色掩码结合,生成仅包含白色区域的图像 masked。

调用 self.cv_show 显示处理后的图像。
登录后复制

plain 复制代码
def select_rgb_white_yellow(self,image):
        lower = np.array([120,120,120])
        upper = np.array([255,255,255])
        white_mask = cv2.inRange(image,lower,upper)
        self.cv_show('white_mask',white_mask)

        masked = cv2.bitwise_and(image,image,mask=white_mask)
        self.cv_show('masked',masked)
        return masked

然后进行停车场图像的轮廓提取。
登录后复制

plain 复制代码
def convert_gray_scale(self,image):
        return cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

    def detect_edges(self,image,low_threshold=50,high_threshold=200):
        return cv2.Canny(image,low_threshold,high_threshold)

通过以下方式调用:
登录后复制

plain 复制代码
gray_images = list(map(park.convert_gray_scale,white_yellow_images))
    park.show_img(gray_images)

    edge_images = list(map(lambda image:park.detect_edges(image),gray_images))
    park.show_img(edge_images)

接下来,把关注重心放在停车场区域,无关紧要的范围进行删除。

大致标定停车场轮廓角点:
登录后复制

plain 复制代码
def select_region(self, image):
        # first, define the polygon by vertices
        rows, cols = image.shape[:2]
        pt_1 = [cols * 0.05, rows * 0.90]
        pt_2 = [cols * 0.05, rows * 0.70]
        pt_3 = [cols * 0.30, rows * 0.55]
        pt_4 = [cols * 0.6, rows * 0.15]
        pt_5 = [cols * 0.90, rows * 0.15]
        pt_6 = [cols * 0.90, rows * 0.90]

        vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]], dtype=np.int32)
        point_img = image.copy()
        point_img = cv2.cvtColor(point_img, cv2.COLOR_GRAY2RGB)
        for point in vertices[0]:
            cv2.circle(point_img, (point[0], point[1]), 10, (0, 0, 255), 4)
        self.cv_show('point_img', point_img)

        return self.filter_region(image, vertices)

把无关区域剪除掉:
登录后复制

plain 复制代码
def filter_region(self, image, vertices):
        mask = np.zeros_like(image)
        if len(mask.shape) ==2:
            cv2.fillPoly(mask, vertices, 255)
            self.cv_show('mask', mask)
        return cv2.bitwise_and(image, mask)

调用方法:
登录后复制

plain 复制代码
roi_images = list(map(park.select_region,edge_images))
park.show_img(roi_images)

调用结果:

相关推荐
俞凡4 分钟前
提示工程演进之旅
人工智能
机器之心20 分钟前
Windsurf交易内幕疯传:24亿美元被瓜分,背刺数百员工?
人工智能
芷栀夏2 小时前
飞算Java AI开发助手:引领智能编程新风尚
java·人工智能·python
聚客AI2 小时前
🛠️从架构到部署:企业级多Agent系统开发百科全书
人工智能·llm·agent
陈大鱼头2 小时前
AI 大模型调用全流程:从原理到实践的完整指南
人工智能·ai编程
mortimer2 小时前
用Gemini攻克小语种语音识别,生成广播级SRT字幕
人工智能·gemini
CH3_CH2_CHO2 小时前
DAY01:【ML 第一弹】机器学习概述
人工智能·机器学习
元让_vincent2 小时前
论文Review 3DGSSLAM GauS-SLAM: Dense RGB-D SLAM with Gaussian Surfels
图像处理·人工智能·平面·3d·图形渲染
武子康2 小时前
AI炼丹日志-30-新发布【1T 万亿】参数量大模型!Kimi‑K2开源大模型解读与实践
人工智能·gpt·ai·语言模型·chatgpt·架构·开源
徒慕风流3 小时前
使用球体模型模拟相机成像:地面与天空的可见性判断与纹理映射
算法·计算机视觉