计算机视觉图像识别16.1-停车位识别的图像预处理

本章节完成停车场监控视频中停车位实时情况的动态识别。

首先,来做图像的预处理。

下面的两张图片是从一段停车场监控中截取的视频截图:

首先,我们来定义函数select_rgb_white_yellow,用于从函数中提取白色和黄色区域,并把处理后的图像进行返回。

设置颜色范围:lower 表示最低 RGB 值 [120,120,120],upper 表示最高 RGB 值 [255,255,255]。

使用 cv2.inRange 创建一个白色掩码 white_mask,筛选出图像中在指定 RGB 范围内的像素。

调用 self.cv_show 显示白色掩码图像。

使用 cv2.bitwise_and 将原始图像与白色掩码结合,生成仅包含白色区域的图像 masked。

调用 self.cv_show 显示处理后的图像。
登录后复制

plain 复制代码
def select_rgb_white_yellow(self,image):
        lower = np.array([120,120,120])
        upper = np.array([255,255,255])
        white_mask = cv2.inRange(image,lower,upper)
        self.cv_show('white_mask',white_mask)

        masked = cv2.bitwise_and(image,image,mask=white_mask)
        self.cv_show('masked',masked)
        return masked

然后进行停车场图像的轮廓提取。
登录后复制

plain 复制代码
def convert_gray_scale(self,image):
        return cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

    def detect_edges(self,image,low_threshold=50,high_threshold=200):
        return cv2.Canny(image,low_threshold,high_threshold)

通过以下方式调用:
登录后复制

plain 复制代码
gray_images = list(map(park.convert_gray_scale,white_yellow_images))
    park.show_img(gray_images)

    edge_images = list(map(lambda image:park.detect_edges(image),gray_images))
    park.show_img(edge_images)

接下来,把关注重心放在停车场区域,无关紧要的范围进行删除。

大致标定停车场轮廓角点:
登录后复制

plain 复制代码
def select_region(self, image):
        # first, define the polygon by vertices
        rows, cols = image.shape[:2]
        pt_1 = [cols * 0.05, rows * 0.90]
        pt_2 = [cols * 0.05, rows * 0.70]
        pt_3 = [cols * 0.30, rows * 0.55]
        pt_4 = [cols * 0.6, rows * 0.15]
        pt_5 = [cols * 0.90, rows * 0.15]
        pt_6 = [cols * 0.90, rows * 0.90]

        vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]], dtype=np.int32)
        point_img = image.copy()
        point_img = cv2.cvtColor(point_img, cv2.COLOR_GRAY2RGB)
        for point in vertices[0]:
            cv2.circle(point_img, (point[0], point[1]), 10, (0, 0, 255), 4)
        self.cv_show('point_img', point_img)

        return self.filter_region(image, vertices)

把无关区域剪除掉:
登录后复制

plain 复制代码
def filter_region(self, image, vertices):
        mask = np.zeros_like(image)
        if len(mask.shape) ==2:
            cv2.fillPoly(mask, vertices, 255)
            self.cv_show('mask', mask)
        return cv2.bitwise_and(image, mask)

调用方法:
登录后复制

plain 复制代码
roi_images = list(map(park.select_region,edge_images))
park.show_img(roi_images)

调用结果:

相关推荐
一个热爱生活的普通人17 分钟前
不需要apikey认证的大模型api如何在cline上配置(结尾附带cline系统提示词)
人工智能·aigc
Xyz_Overlord17 分钟前
机器学习----决策树
人工智能·决策树·机器学习
codegarfield29 分钟前
神经网络中的梯度消失与梯度爆炸
人工智能·神经网络·resnet·梯度
carpell31 分钟前
【语义分割专栏】2:U-net原理篇(由浅入深)
人工智能·深度学习·计算机视觉·语义分割
Black_Rock_br38 分钟前
迈向分布式智能:解析MCP到A2A的通信范式迁移
人工智能
Ann1 小时前
function call到MCP技术演进
人工智能·openai·mcp
C66668881 小时前
TCP/IP协议
开发语言·tcp/ip·计算机视觉·信息与通信
非凡ghost1 小时前
ChatOn:智能AI聊天助手,开启高效互动新时代
android·人工智能·智能手机·生活·软件需求
一颗小树x2 小时前
【机器人】具身导航 VLN 最新论文汇总 | Vision-and-Language Navigation
人工智能·论文·综述·具身导航·对象导航
红衣小蛇妖2 小时前
神经网络-Day42
人工智能·深度学习·神经网络