机器学习:在虚拟环境中使用 Jupyter Lab

机器学习:在虚拟环境中使用 Jupyter Lab

第一步:激活虚拟环境

打开终端(CMD/PowerShell)并执行:

$cmd

#激活虚拟环境

$conda activate D:\conda_envs\mll_env

激活后,终端提示符前会显示环境名称,例如:

(D:\conda_envs\mll_env) D:\conda_envs>

第二步: 安装 Jupyter Lab

在激活的环境中安装 Jupyter Lab:

复制代码
conda install -c conda-forge jupyterlab

确认安装的包:

复制代码
conda list jupyterlab  # 应显示版本号(如 4.0.13)

第三步:注册环境内核到 Jupyter(关键步骤)

1、注册环境内核到 Jupyter

为了让 Jupyter Lab 识别当前环境的 Python 内核,需安装 ipykernel 并注册内核:

复制代码
#安装 ipykernel
conda install ipykernel -y

#注册内核到正确路径
$python -m ipykernel install --name mll_env --display-name "Python (mll_env)" --prefix=D:\conda_envs\mll_env
  • 参数说明

    • --name mll_env:内核名称(与环境名一致)

    • --display-name:在 Jupyter 中显示的名称

    • --prefix:指定虚拟环境路径,确保内核配置写入环境目录

2、验证内核配置位置

  1. 检查虚拟环境目录下是否生成内核配置:

    复制代码
    D:\conda_envs\mll_env\share\jupyter\kernels\mll_env
    ├── kernel.json
    ├── logo-32x32.png
    └── logo-64x64.png

2.打开 kernel.json 文件,确认 argv 中的 Python 路径指向虚拟环境:

第4步:启动 Jupyter Lab 并验证

1、在激活的虚拟环境中启动 Jupyter Lab

复制代码
jupyter lab

2、创建新 Notebook :选择内核 Python (mll_env)

3、验证 Python 路径

在 Notebook 中运行以下代码:

复制代码
import sys
print(sys.executable)

预期输出

复制代码
D:\conda_envs\mll_env\python.exe

4、查看Jupyter Lab的文件工作目录

import os

print("当前工作目录:", os.getcwd())

相关推荐
AI小云2 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
L.fountain2 天前
机器学习shap分析案例
人工智能·机器学习
weixin_429630262 天前
机器学习-第一章
人工智能·机器学习
Cedric11132 天前
机器学习中的距离总结
人工智能·机器学习
寒月霜华2 天前
机器学习-数据标注
人工智能·机器学习
Godspeed Zhao2 天前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383922 天前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
救救孩子把2 天前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
蒋星熠2 天前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
Hcoco_me2 天前
什么是机器学习?
人工智能·机器学习