机器学习:在虚拟环境中使用 Jupyter Lab

机器学习:在虚拟环境中使用 Jupyter Lab

第一步:激活虚拟环境

打开终端(CMD/PowerShell)并执行:

$cmd

#激活虚拟环境

$conda activate D:\conda_envs\mll_env

激活后,终端提示符前会显示环境名称,例如:

(D:\conda_envs\mll_env) D:\conda_envs>

第二步: 安装 Jupyter Lab

在激活的环境中安装 Jupyter Lab:

复制代码
conda install -c conda-forge jupyterlab

确认安装的包:

复制代码
conda list jupyterlab  # 应显示版本号(如 4.0.13)

第三步:注册环境内核到 Jupyter(关键步骤)

1、注册环境内核到 Jupyter

为了让 Jupyter Lab 识别当前环境的 Python 内核,需安装 ipykernel 并注册内核:

复制代码
#安装 ipykernel
conda install ipykernel -y

#注册内核到正确路径
$python -m ipykernel install --name mll_env --display-name "Python (mll_env)" --prefix=D:\conda_envs\mll_env
  • 参数说明

    • --name mll_env:内核名称(与环境名一致)

    • --display-name:在 Jupyter 中显示的名称

    • --prefix:指定虚拟环境路径,确保内核配置写入环境目录

2、验证内核配置位置

  1. 检查虚拟环境目录下是否生成内核配置:

    复制代码
    D:\conda_envs\mll_env\share\jupyter\kernels\mll_env
    ├── kernel.json
    ├── logo-32x32.png
    └── logo-64x64.png

2.打开 kernel.json 文件,确认 argv 中的 Python 路径指向虚拟环境:

第4步:启动 Jupyter Lab 并验证

1、在激活的虚拟环境中启动 Jupyter Lab

复制代码
jupyter lab

2、创建新 Notebook :选择内核 Python (mll_env)

3、验证 Python 路径

在 Notebook 中运行以下代码:

复制代码
import sys
print(sys.executable)

预期输出

复制代码
D:\conda_envs\mll_env\python.exe

4、查看Jupyter Lab的文件工作目录

import os

print("当前工作目录:", os.getcwd())

相关推荐
byxdaz6 小时前
CUDA加速的线性代数求解器库cuSOLVER
机器学习·矩阵
Blossom.1189 小时前
量子计算在金融科技中的应用前景
大数据·人工智能·安全·机器学习·计算机视觉·金融·量子计算
熊猫在哪11 小时前
野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(一)conda环境搭建
linux·人工智能·python·嵌入式硬件·神经网络·机器学习·边缘计算
geneculture13 小时前
《黄帝内经》数学建模与形式化表征方式的重构
人工智能·算法·机器学习·数学建模·重构·课程设计·融智学的重要应用
渝欢意13 小时前
机器学习——逻辑回归
人工智能·机器学习·逻辑回归
绝顶大聪明16 小时前
[欠拟合过拟合]机器学习-part10
人工智能·机器学习
白熊18817 小时前
【机器学习基础】机器学习入门核心算法:线性回归(Linear Regression)
人工智能·算法·机器学习·回归·线性回归
熊猫在哪17 小时前
野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(四)安装RKNN Toolkit2
人工智能·python·嵌入式硬件·深度学习·神经网络·目标检测·机器学习
老唐77717 小时前
PyTorch的基本操作
人工智能·pytorch·python·深度学习·神经网络·机器学习·计算机视觉
纪伊路上盛名在18 小时前
python、R、shell兼容1
开发语言·python·jupyter·r语言·shell·生物信息·效率