机器学习:在虚拟环境中使用 Jupyter Lab

机器学习:在虚拟环境中使用 Jupyter Lab

第一步:激活虚拟环境

打开终端(CMD/PowerShell)并执行:

$cmd

#激活虚拟环境

$conda activate D:\conda_envs\mll_env

激活后,终端提示符前会显示环境名称,例如:

(D:\conda_envs\mll_env) D:\conda_envs>

第二步: 安装 Jupyter Lab

在激活的环境中安装 Jupyter Lab:

复制代码
conda install -c conda-forge jupyterlab

确认安装的包:

复制代码
conda list jupyterlab  # 应显示版本号(如 4.0.13)

第三步:注册环境内核到 Jupyter(关键步骤)

1、注册环境内核到 Jupyter

为了让 Jupyter Lab 识别当前环境的 Python 内核,需安装 ipykernel 并注册内核:

复制代码
#安装 ipykernel
conda install ipykernel -y

#注册内核到正确路径
$python -m ipykernel install --name mll_env --display-name "Python (mll_env)" --prefix=D:\conda_envs\mll_env
  • 参数说明

    • --name mll_env:内核名称(与环境名一致)

    • --display-name:在 Jupyter 中显示的名称

    • --prefix:指定虚拟环境路径,确保内核配置写入环境目录

2、验证内核配置位置

  1. 检查虚拟环境目录下是否生成内核配置:

    复制代码
    D:\conda_envs\mll_env\share\jupyter\kernels\mll_env
    ├── kernel.json
    ├── logo-32x32.png
    └── logo-64x64.png

2.打开 kernel.json 文件,确认 argv 中的 Python 路径指向虚拟环境:

第4步:启动 Jupyter Lab 并验证

1、在激活的虚拟环境中启动 Jupyter Lab

复制代码
jupyter lab

2、创建新 Notebook :选择内核 Python (mll_env)

3、验证 Python 路径

在 Notebook 中运行以下代码:

复制代码
import sys
print(sys.executable)

预期输出

复制代码
D:\conda_envs\mll_env\python.exe

4、查看Jupyter Lab的文件工作目录

import os

print("当前工作目录:", os.getcwd())

相关推荐
2501_938963967 分钟前
基于音乐推荐数据的逻辑回归实验报告:曲风特征与用户收听意愿预测
算法·机器学习·逻辑回归
2501_9387912211 分钟前
逻辑回归正则化解释性实验报告:L2 正则对模型系数收缩的可视化分析
算法·机器学习·逻辑回归
2501_9387900711 分钟前
逻辑回归正则化参数选择实验报告:贝叶斯优化与网格搜索的效率对比
算法·机器学习·逻辑回归
2501_9387802814 分钟前
逻辑回归特征重要性排序实验报告:不同特征选择方法的排序一致性验证
算法·机器学习·逻辑回归
一碗绿豆汤1 小时前
机器学习第一阶段
人工智能·笔记·机器学习
水凌风里3 小时前
格拉姆角场(Gramian Angular Field, GAF)详解
人工智能·机器学习
麦麦大数据3 小时前
F043 vue+flask天气预测可视化系统大数据(浅色版)+机器学习+管理端+爬虫+超酷界面+顶级可视化水平
大数据·vue.js·机器学习·flask·空气质量·天气预测·气温预测
zzZ65653 小时前
U-net 系列算法总结
人工智能·深度学习·机器学习
deephub4 小时前
sklearn 特征选择实战:用 RFE 找到最优特征组合
人工智能·python·机器学习·sklearn·特征选择
罗小罗同学4 小时前
整合多中心临床试验的转录组与病理切片数据,提出面向晚期非小细胞肺癌免疫治疗疗效预测的解决方案
人工智能·机器学习·医学人工智能·医工交叉