机器学习:在虚拟环境中使用 Jupyter Lab

机器学习:在虚拟环境中使用 Jupyter Lab

第一步:激活虚拟环境

打开终端(CMD/PowerShell)并执行:

$cmd

#激活虚拟环境

$conda activate D:\conda_envs\mll_env

激活后,终端提示符前会显示环境名称,例如:

(D:\conda_envs\mll_env) D:\conda_envs>

第二步: 安装 Jupyter Lab

在激活的环境中安装 Jupyter Lab:

复制代码
conda install -c conda-forge jupyterlab

确认安装的包:

复制代码
conda list jupyterlab  # 应显示版本号(如 4.0.13)

第三步:注册环境内核到 Jupyter(关键步骤)

1、注册环境内核到 Jupyter

为了让 Jupyter Lab 识别当前环境的 Python 内核,需安装 ipykernel 并注册内核:

复制代码
#安装 ipykernel
conda install ipykernel -y

#注册内核到正确路径
$python -m ipykernel install --name mll_env --display-name "Python (mll_env)" --prefix=D:\conda_envs\mll_env
  • 参数说明

    • --name mll_env:内核名称(与环境名一致)

    • --display-name:在 Jupyter 中显示的名称

    • --prefix:指定虚拟环境路径,确保内核配置写入环境目录

2、验证内核配置位置

  1. 检查虚拟环境目录下是否生成内核配置:

    复制代码
    D:\conda_envs\mll_env\share\jupyter\kernels\mll_env
    ├── kernel.json
    ├── logo-32x32.png
    └── logo-64x64.png

2.打开 kernel.json 文件,确认 argv 中的 Python 路径指向虚拟环境:

第4步:启动 Jupyter Lab 并验证

1、在激活的虚拟环境中启动 Jupyter Lab

复制代码
jupyter lab

2、创建新 Notebook :选择内核 Python (mll_env)

3、验证 Python 路径

在 Notebook 中运行以下代码:

复制代码
import sys
print(sys.executable)

预期输出

复制代码
D:\conda_envs\mll_env\python.exe

4、查看Jupyter Lab的文件工作目录

import os

print("当前工作目录:", os.getcwd())

相关推荐
搏博2 小时前
结构模式识别理论与方法
人工智能·深度学习·学习·算法·机器学习
没有梦想的咸鱼185-1037-16633 小时前
【大模型ChatGPT+R-Meta】AI赋能R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表“
人工智能·随机森林·机器学习·chatgpt·数据分析·r语言
聚客AI3 小时前
向量数据库+KNN算法实战:HNSW算法核心原理与Faiss性能调优终极指南
人工智能·机器学习·语言模型·自然语言处理·transformer·agent·向量数据库
江安的猪猪3 小时前
大连理工大学选修课——机器学习笔记(9):线性判别式与逻辑回归
笔记·机器学习·逻辑回归
cjay_fighting4 小时前
机器学习,深度学习
python·神经网络·机器学习·transformer·tensorflow2
江安的猪猪5 小时前
大连理工大学选修课——机器学习笔记(7):集成学习及随机森林
笔记·机器学习·集成学习
陈苏同学5 小时前
[论文梳理] 足式机器人规划&控制流程 - 接触&碰撞的控制 - 模型误差 - 自动驾驶车的安全&合规(4个课堂讨论问题)
人工智能·安全·机器学习·机器人·自动驾驶·汽车
黑客笔记7 小时前
机器学习在Web攻击方向有什么建树吗?
人工智能·机器学习
Roc-xb8 小时前
jupyter notebook汉化教程
ide·python·jupyter
NONE-C8 小时前
自动驾驶-一位从业两年的独特视角
人工智能·机器学习·自动驾驶