机器学习:在虚拟环境中使用 Jupyter Lab

机器学习:在虚拟环境中使用 Jupyter Lab

第一步:激活虚拟环境

打开终端(CMD/PowerShell)并执行:

$cmd

#激活虚拟环境

$conda activate D:\conda_envs\mll_env

激活后,终端提示符前会显示环境名称,例如:

(D:\conda_envs\mll_env) D:\conda_envs>

第二步: 安装 Jupyter Lab

在激活的环境中安装 Jupyter Lab:

复制代码
conda install -c conda-forge jupyterlab

确认安装的包:

复制代码
conda list jupyterlab  # 应显示版本号(如 4.0.13)

第三步:注册环境内核到 Jupyter(关键步骤)

1、注册环境内核到 Jupyter

为了让 Jupyter Lab 识别当前环境的 Python 内核,需安装 ipykernel 并注册内核:

复制代码
#安装 ipykernel
conda install ipykernel -y

#注册内核到正确路径
$python -m ipykernel install --name mll_env --display-name "Python (mll_env)" --prefix=D:\conda_envs\mll_env
  • 参数说明

    • --name mll_env:内核名称(与环境名一致)

    • --display-name:在 Jupyter 中显示的名称

    • --prefix:指定虚拟环境路径,确保内核配置写入环境目录

2、验证内核配置位置

  1. 检查虚拟环境目录下是否生成内核配置:

    复制代码
    D:\conda_envs\mll_env\share\jupyter\kernels\mll_env
    ├── kernel.json
    ├── logo-32x32.png
    └── logo-64x64.png

2.打开 kernel.json 文件,确认 argv 中的 Python 路径指向虚拟环境:

第4步:启动 Jupyter Lab 并验证

1、在激活的虚拟环境中启动 Jupyter Lab

复制代码
jupyter lab

2、创建新 Notebook :选择内核 Python (mll_env)

3、验证 Python 路径

在 Notebook 中运行以下代码:

复制代码
import sys
print(sys.executable)

预期输出

复制代码
D:\conda_envs\mll_env\python.exe

4、查看Jupyter Lab的文件工作目录

import os

print("当前工作目录:", os.getcwd())

相关推荐
xier_ran2 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳20063 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
Salt_07284 小时前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习
无心水4 小时前
【Python实战进阶】2、Jupyter Notebook终极指南:为什么说不会Jupyter就等于不会Python?
python·jupyter·信息可视化·binder·google colab·python实战进阶·python工程化实战进阶
智能交通技术5 小时前
iTSTech:自动驾驶技术综述报告 2025
人工智能·机器学习·自动驾驶
大佬,救命!!!8 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
Pocker_Spades_A9 小时前
在家写的代码,办公室接着改?Jupyter通过cpolar实现远程访问这么玩
ide·python·jupyter
yLDeveloper10 小时前
致深度学习小白:一文理解拟合问题与经典解决方案
机器学习·dive into deep learning
6***x54521 小时前
C在机器学习中的ML.NET应用
人工智能·机器学习
甄心爱学习1 天前
数据挖掘-聚类方法
人工智能·算法·机器学习