目录
[1. Lars-reportV0.1 report模块介绍](#1. Lars-reportV0.1 report模块介绍)
[2.Lars-reporterV0.1 reporter项目目录构建](#2.Lars-reporterV0.1 reporter项目目录构建)
[3.Lars-ReporterV0.1 数据表和proto协议环境搭建](#3.Lars-ReporterV0.1 数据表和proto协议环境搭建)
6.Lars-ReporterV0.2开辟存储线程池-网络存储分离
1. Lars-reportV0.1 report模块介绍
- 存储线程池及消息队列
我们现在的reporter_service的io入库操作,完全是在消息的callback中进行的,那么实际上,这回占用我们server的工作线程的阻塞时间,从而浪费cpu。所以我们应该将io的入库操作,交给一个专门做入库的消息队列线程池来做,这样我们的callback就会立刻返回该业务,从而可以继续处理下一个conn链接的消息事件业务。
所以我们就要在此给reporter_service设计一个存储数据的线程池及配套的消息队列。当然这里面我们还是直接用写好的`lars_reactor`框架里的接口即可。
> lars_reporter/src/reporter_service.cpp
```c
#include "lars_reactor.h"
#include "lars.pb.h"
#include "store_report.h"
#include <string>
thread_queue<lars::ReportStatusRequest> **reportQueues = NULL;
int thread_cnt = 0;
void get_report_status(const char *data, uint32_t len, int msgid, net_connection *conn, void *user_data)
{
lars::ReportStatusRequest req;
req.ParseFromArray(data, len);
//将上报数据存储到db
StoreReport sr;
sr.store(req);
//轮询将消息平均发送到每个线程的消息队列中
static int index = 0;
//将消息发送给某个线程消息队列
reportQueues[index]->send(req);
index ++;
index = index % thread_cnt;
}
void create_reportdb_threads()
{
thread_cnt = config_file::instance()->GetNumber("reporter", "db_thread_cnt", 3);
//开线程池的消息队列
reportQueues = new thread_queue<lars::ReportStatusRequest>*[thread_cnt];
if (reportQueues == NULL) {
fprintf(stderr, "create thread_queue<lars::ReportStatusRequest>*[%d], error", thread_cnt) ;
exit(1);
}
for (int i = 0; i < thread_cnt; i++) {
//给当前线程创建一个消息队列queue
reportQueues[i] = new thread_queue<lars::ReportStatusRequest>();
if (reportQueues == NULL) {
fprintf(stderr, "create thread_queue error\n");
exit(1);
}
pthread_t tid;
int ret = pthread_create(&tid, NULL, store_main, reportQueues[i]);
if (ret == -1) {
perror("pthread_create");
exit(1);
}
pthread_detach(tid);
}
}
2.Lars-reporterV0.1 reporter项目目录构建
int main(int argc, char **argv)
{
event_loop loop;
//加载配置文件
config_file::setPath("./conf/lars_reporter.conf");
std::string ip = config_file::instance()->GetString("reactor", "ip", "0.0.0.0");
short port = config_file::instance()->GetNumber("reactor", "port", 7779);
//创建tcp server
tcp_server server(&loop, ip.c_str(), port);
//添加数据上报请求处理的消息分发处理业务
server.add_msg_router(lars::ID_ReportStatusRequest, get_report_status);
//为了防止在业务中出现io阻塞,那么需要启动一个线程池对IO进行操作的,接受业务的请求存储消息
create_reportdb_threads();
//启动事件监听
loop.event_process();
return 0;
}
```
这里主线程启动了线程池,根据配置文件的`db_thread_cnt`数量来开辟。每个线程都会执行`store_main`方法,我们来看一下实现
> lars_reporter/src/store_thread.cpp
```c
#include "lars.pb.h"
#include "lars_reactor.h"
#include "store_report.h"
struct Args
{
thread_queue<lars::ReportStatusRequest>* first;
StoreReport *second;
};
//typedef void io_callback(event_loop *loop, int fd, void *args);
void thread_report(event_loop *loop, int fd, void *args)
{
//1. 从queue里面取出需要report的数据(需要thread_queue)
thread_queue<lars::ReportStatusRequest>* queue = ((Args*)args)->first;
StoreReport *sr = ((Args*)args)->second;
std::queue<lars::ReportStatusRequest> report_msgs;
//1.1 从消息队列中取出全部的消息元素集合
queue->recv(report_msgs);
while ( !report_msgs.empty() ) {
lars::ReportStatusRequest msg = report_msgs.front();
report_msgs.pop();
//2. 将数据存储到DB中(需要StoreReport)
sr->store(msg);
}
}
3.Lars-ReporterV0.1 数据表和proto协议环境搭建
void *store_main(void *args)
{
//得到对应的thread_queue
thread_queue<lars::ReportStatusRequest> *queue = (thread_queue<lars::ReportStatusRequest>*)args;
//定义事件触发机制
event_loop loop;
//定义一个存储对象
StoreReport sr;
Args callback_args;
callback_args.first = queue;
callback_args.second = &sr;
queue->set_loop(&loop);
queue->set_callback(thread_report, &callback_args);
//启动事件监听
loop.event_process();
return NULL;
}
```
每个线程都会绑定一个`thread_queue<lars::ReportStatusRequest>`,然后一个线程里面有一个loop,来监控消息队列是否有消息事件过来,如果有消息实现过来,针对每个消息会触发`thread_report()`方法, 在`thread_report()`中,我们就直接将`lars::ReportStatusRequest`消息存储到db中。
那么,由谁来给每个线程的`thread_queue`发送消息呢,就是agent/客户端发送的请求,我们在处理`lars::ID_ReportStatusRequest` 消息分发业务的时候调用`get_report_status()`来触发。
> lars_reporter/src/reporter_service.cpp
4.Lars-ReporterV0.1上报请求业务处理
```c
void get_report_status(const char *data, uint32_t len, int msgid, net_connection *conn, void *user_data)
{
lars::ReportStatusRequest req;
req.ParseFromArray(data, len);
//将上报数据存储到db
StoreReport sr;
sr.store(req);
//轮询将消息平均发送到每个线程的消息队列中
static int index = 0;
//将消息发送给某个线程消息队列
reportQueues[index]->send(req);
index ++;
index = index % thread_cnt;
}
```
这里的分发机制,是采用最轮询的方式,是每个线程依次分配,去调用`thread_queue`的`send()`方法,将消息发送给消息队列。
最后我们进行测试,效果跟之前的效果是一样的。我们现在已经集成进来了存储线程池,现在就不用担心在处理业务的时候,因为DB等的io阻塞,使cpu得不到充分利用了。
5.Lars-ReporterV0.1上报请求模块的测试
六、Lars-Load Balance Agent负载代理
1) 简介
一个服务称为一个模块,一个模块由modid+cmdid来标识
modid+cmdid的组合表示一个远程服务,这个远程服务一般部署在多个节点上
LB Agent以UDP方式为业务方提供:1、节点获取服务;2、节点调用结果上报服务
1.1 业务1-节点获取服务:
业务方每次要向远程服务发送消息时,先利用modid+cmdid去向LB Agent获取一个可用节点,然后向该节点发送消息,完成一次远程调用;具体获取modid+cmdid下的哪个节点是由LB Agent负责的
1.2 业务2-节点调用结果上报服务
对LB Agent节点的一次远程调用后,调用结果会汇报给LB Agent,以便LB Agent根据自身的LB算法来感知远程服务节点的状态是空闲还是过载,进而控制节点获取时的节点调度.

6.Lars-ReporterV0.2开辟存储线程池-网络存储分离
LB Agent拥有5个线程,一个LB算法:
-
UDP Server服务,并运行LB算法,对业务提供节点获取和节点调用结果上报服务;为了增大系统吞吐量,使用3个UDP Server服务互相独立运行LB算法:`modid+cmdid % 3 = i`的那些模块的服务与调度,由第`i+1`个UDP Server线程负责
-
Dns Service Client:是dnsserver的客户端线程,负责根据需要,向dnsserver获取一个模块的节点集合(或称为获取路由);UDP Server会按需向此线程的MQ写入获取路由请求,DSS Client将MQ到来的请求转发到dnsserver,之后将dnsserver返回的路由信息更新到对应的UDP Server线程维护的路由信息中
-
Report Service Client:是reporter的客户端线程,负责将每个模块下所有节点在一段时间内的调用结果、过载情况上报到reporter Service端,便于观察情况、做报警;本身消费MQ数据,UDP Server会按需向MQ写入上报状态请求