nDCG(归一化折损累计增益) 是衡量排序质量的指标,常用于搜索引擎或推荐系统

nDCG(归一化折损累计增益) 是衡量排序质量的指标,常用于搜索引擎或推荐系统。核心思想是:排名越靠前的高质量结果,对整体评分的贡献越大,但后续结果的贡献会逐渐"打折"。最终通过对比实际排序与理想排序的得分,得到一个0到1之间的值(越接近1,排序越好)。


通俗解释:

假设你搜索"苹果",搜索引擎返回5个结果。nDCG的作用是:

  1. 给高质量结果加分(比如相关度高的排在前面)。
  2. 给靠后的结果打折(比如第5名的结果即使相关,贡献也变小)。
  3. 对比"实际排序"和"完美排序"的得分,最终给出一个0~1的评分(1表示完美)。

数值举例(假设相关度分3档:0不相关,1一般,2非常相关)

场景:
  • 实际排序 :结果的相关度依次为 [2, 1, 2, 0, 1]
  • 理想排序 (按相关度从高到低排列):[2, 2, 1, 1, 0]

计算步骤:
  1. 计算DCG(实际排序的得分)

    • 公式:每个结果的增益除以它的位置的对数值(位置从1开始)。

    • 计算:

      复制代码
      DCG = 2/log₂(2) + 1/log₂(3) + 2/log₂(4) + 0/log₂(5) + 1/log₂(6)
           = 2/1 + 1/1.585 + 2/2 + 0 + 1/2.585
           ≈ 2 + 0.63 + 1 + 0 + 0.39
           ≈ 4.02
  2. 计算IDCG(理想排序的得分)

    • 理想排序的DCG即为IDCG:

      复制代码
      IDCG = 2/log₂(2) + 2/log₂(3) + 1/log₂(4) + 1/log₂(5) + 0/log₂(6)
            = 2/1 + 2/1.585 + 1/2 + 1/2.322 + 0
            ≈ 2 + 1.26 + 0.5 + 0.43
            ≈ 4.19
  3. 归一化得到nDCG

    复制代码
    nDCG = DCG / IDCG = 4.02 / 4.19 ≈ 0.96

结论:

  • nDCG≈0.96,接近1,说明实际排序接近理想情况。
  • 如果实际排序完全乱序(比如把不相关的结果排第一),nDCG会接近0。
相关推荐
光算科技1 天前
网站301搬家后|谷歌一直不收录新页面怎么办
搜索引擎
中國龍在廣州1 天前
现在人工智能的研究路径可能走反了
人工智能·算法·搜索引擎·chatgpt·机器人
后端小张2 天前
【AI 学习】从0到1深入理解Agent AI智能体:理论与实践融合指南
人工智能·学习·搜索引擎·ai·agent·agi·ai agent
零基础的修炼2 天前
[项目]基于正倒排索引的Boost搜索引擎---编写搜索引擎模块 Searcher
搜索引擎
老友@2 天前
RAG 的诞生:为了让 AI 不再“乱编”
人工智能·搜索引擎·ai·语言模型·自然语言处理·rag
Elastic 中国社区官方博客3 天前
开始使用 Elastic Agent Builder 和 Microsoft Agent Framework
数据库·人工智能·elasticsearch·microsoft·搜索引擎·ai·全文检索
yangmf20403 天前
APM(三):监控 Python 服务链
大数据·运维·开发语言·python·elk·elasticsearch·搜索引擎
yangmf20403 天前
APM(二):监控 Python 服务
大数据·python·elasticsearch·搜索引擎