7D-AI系列:模型微调之llama-factory

大模型的出现,导致信息量太大,只有静心动手操作,才能得到真理。

文章目录

llama-factory简介

Llama Factory 是一个专注于大型语言模型(LLMs)微调的开源工具库,旨在简化对 LLaMA(Meta 开源模型)、BLOOM、ChatGLM 等大模型的定制化训练流程。它提供了用户友好的接口和丰富的功能,帮助开发者、研究者快速实现模型在特定任务或数据集上的适配。

llama-factory主要功能

1. 多种训练方式支持

  • LoRA 微调
  • QLoRA 微调(量化版LoRA)
  • 全参数微调
  • DPO/ORPO/SimPO 训练(偏好对齐)
  • PPO 训练(强化学习)
  • KTO 训练
  • 预训练

2. 多模态支持

  • 支持 LLaVA、Qwen-VL 等多模态模型
  • 可以处理图像和视频输入

3. 模型量化

支持多种量化方法:GPTQ、AWQ、AQLM

支持 4-bit、8-bit 等不同精度

4. 分布式训练

  • 支持多机训练
  • 支持 DeepSpeed ZeRO-3
  • 支持 Ray 分布式
  • 支持 FSDP

5. 优化技术

  • GaLore 优化
  • APOLLO 优化
  • BAdam 优化器
  • Adam-mini 优化器
  • LoRA+
  • PiSSA 优化

源码模块

安装步骤

bash 复制代码
# 配置虚拟环境
conda create -n llama_factory python=3.12 -y
conda activate llama_factory
# 克隆 LLaMA-Factory 仓库(使用 --depth 1 可以只克隆最新版本,加快下载速度)
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
# 进入项目目录
cd LLaMA-Factory
# 安装依赖包,包括 PyTorch 和评估指标相关的依赖
pip install -e ".[torch,metrics]"
# 启动 Web UI 界面
llamafactory-cli webui

启动界面

配置模型、训练参数和数据集

注意:个人练习不要选择太大的模型权重,不然会非常慢,并且也没有效果。

数据集要配置在dataset_info.json中才能在列表中选择,如下所示:

训练过程

验证训练结果

训练前:


训练后:


其实微调并不难,难的是数据集和效果评估。

你想看哪些和AI大模型相关的技术点,可以留言,我们一一拆解。

相关推荐
飞哥数智坊7 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三7 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯8 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet10 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算11 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心11 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar12 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai12 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
大模型教程12 小时前
小白学大模型:从零搭建LLaMA
程序员·llm·llama
聚客AI13 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm