7D-AI系列:模型微调之llama-factory

大模型的出现,导致信息量太大,只有静心动手操作,才能得到真理。

文章目录

llama-factory简介

Llama Factory 是一个专注于大型语言模型(LLMs)微调的开源工具库,旨在简化对 LLaMA(Meta 开源模型)、BLOOM、ChatGLM 等大模型的定制化训练流程。它提供了用户友好的接口和丰富的功能,帮助开发者、研究者快速实现模型在特定任务或数据集上的适配。

llama-factory主要功能

1. 多种训练方式支持

  • LoRA 微调
  • QLoRA 微调(量化版LoRA)
  • 全参数微调
  • DPO/ORPO/SimPO 训练(偏好对齐)
  • PPO 训练(强化学习)
  • KTO 训练
  • 预训练

2. 多模态支持

  • 支持 LLaVA、Qwen-VL 等多模态模型
  • 可以处理图像和视频输入

3. 模型量化

支持多种量化方法:GPTQ、AWQ、AQLM

支持 4-bit、8-bit 等不同精度

4. 分布式训练

  • 支持多机训练
  • 支持 DeepSpeed ZeRO-3
  • 支持 Ray 分布式
  • 支持 FSDP

5. 优化技术

  • GaLore 优化
  • APOLLO 优化
  • BAdam 优化器
  • Adam-mini 优化器
  • LoRA+
  • PiSSA 优化

源码模块

安装步骤

bash 复制代码
# 配置虚拟环境
conda create -n llama_factory python=3.12 -y
conda activate llama_factory
# 克隆 LLaMA-Factory 仓库(使用 --depth 1 可以只克隆最新版本,加快下载速度)
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
# 进入项目目录
cd LLaMA-Factory
# 安装依赖包,包括 PyTorch 和评估指标相关的依赖
pip install -e ".[torch,metrics]"
# 启动 Web UI 界面
llamafactory-cli webui

启动界面

配置模型、训练参数和数据集

注意:个人练习不要选择太大的模型权重,不然会非常慢,并且也没有效果。

数据集要配置在dataset_info.json中才能在列表中选择,如下所示:

训练过程

验证训练结果

训练前:


训练后:


其实微调并不难,难的是数据集和效果评估。

你想看哪些和AI大模型相关的技术点,可以留言,我们一一拆解。

相关推荐
Shawn_Shawn1 小时前
大模型的奥秘:Token与Transformer简单理解
人工智能·llm
weixin_377634843 小时前
【K-S 检验】Kolmogorov–Smirnov计算过程与示例
人工智能·深度学习·机器学习
菜鸟起航ing3 小时前
Spring AI 全方位指南:从基础入门到高级实战
java·人工智能·spring
Guheyunyi3 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全
ZZY_dl4 小时前
训练数据集(三):真实场景下采集的课堂行为目标检测数据集,可直接用于YOLO各版本训练
人工智能·yolo·目标检测
yiersansiwu123d4 小时前
AI伦理治理:在创新与规范之间寻找动态平衡
人工智能
华清远见成都中心4 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
爱好读书5 小时前
AI生成er图/SQL生成er图在线工具
人工智能
CNRio5 小时前
智能影像:AI视频生成技术的战略布局与产业变革
人工智能
六行神算API-天璇5 小时前
架构思考:大模型作为医疗科研的“智能中间件”
人工智能·中间件·架构·数据挖掘·ar